

End-Users' Group Meeting Berlin 21th of February 2008

3D Face EU research project: Overview, progress and challenges

paul.welti@sagem.com

3DFACE background and motivation

- Objectives and achievements
- Remaining challenges

Background of the 3DFACE project

- Electronic passport issued in Europe all contain a digitized facial image
- 2D facial recognition needs to be improved with more robustness
- <u>Unattended</u> border crossing can be achieved, only if additional (biometric) characteristics are observed

Examples of automatic border control

Examples of automatic border control

Border Control Systems

té

Background of the 3DFACE project

- Electronic passport issued in Europe all contain a digitized facial image
- 2D facial recognition needs to be improved with more robustness
- <u>Unattended</u> border crossing can be achieved, only if additional (biometric) characteristics are observed

The 3DFACE project

- Integrated Project (FP6-026845)
 - 36 month project started April 2006
 - Research on 3D facial recognition to address needs of airports for processing biometric passports
- Consortium of 16 partners
 - Industry (Bundesdruckerei, Philips, Sagem, L1)
 - SMEs (Cognitec, Polygon)
 - Research Centres (Fraunhofer-IGD, CGC, CNR-IBB, JRC)
 - Universities (Kent, Twente, Darmstadt)
 - Operators (Airport Berlin, Airport Salzburg, BKA)

One particularity: competitive work on algorithm research

Project objectives

3D face acquisition

- Explore multimodal facial data
- Biometric encryption techniques
- Piloting at several locations
- Standardization

Project objectives

3D face acquisition

- Explore multimodal facial data
- Biometric encryption techniques
- Piloting at several locations
- Standardization

3D FACE acquisition

0

- 3D and high-resolution 2D data
 - Set-up of database with 600 subjects

3D face acquisition

- New device: automatic height adjustment
- Will used in the pilot phases

Project objectives

3D face acquisition

Explore multimodal facial data

- Biometric encryption techniques
- Piloting at several locations

3D, 3D+2D

- Skin texture
- Multiple algorithms
- Score level fusion
- Decision level fusion

3D face acquisition

Explore multimodal facial data

Biometric encryption techniques

Piloting at several locations

Biometric encryption techniques

Highest degree of protection for stored data

- Enable templates to be stored in encrypted form
 - comparison without decryption
- Enable revocability of biometric references
 - create new templates from the same sample
- Avoid Cross-Comparison between databases
- Avoid Medical Relevant Information
- Challenge: Noise-robustness
 - Stored information can be compared with noisy query samples
 - Fuzzy extractors

Project objectives

- 3D face acquisition
- Explore multimodal facial data
- Biometric encryption techniques
- Piloting at several locations

Piloting at several locations

Improve biometric performance in an operational environment

- Internal competition of labs before validation at airportsand at BKA
- Selection of best combination by independent evaluation
- Validation phase
 - Start in July 2008
 - Berlin Schönefeld Airport, Salzburg Airport, BKA location
 - Dedicated to frequent users (area access control)
 - Operational performance
 - Social and operational issues

Acceptance issues in the project: Privacy

- Dedicated work on cross-juridictional and ethical issues in general (CNR)
 - ... But also operational issues
 - Data collection for algorithm design and testing (600 enrolees in France Germany and UK)
 - Data from real users is used during the fiel tests
 - Protocol to deal with privacy issues
 - Data collected from volonteers only
 - « anonymous » facial data (NOT the name, occupation, etc.) are kept
 - Information of the volonteers
 - Commitment on the confidentiality of these data used for research purpose in the frame of the project only.

Acceptance issues in the project: Privacy

• Differences from one country to another

- UK: ethics commitee of the partner
- Germany: legal department
- France: official request to the national privacy commission (CNIL)

Acceptance issues in the project: Safety

- the camera developped for 3D acquisition has an illumination device
- it was legitim to require some proofs that the system was no danger for health
- theoretical calculation and real measurements have been performed:
 - Visible illumination
 - maximum exposure time
 - minimum distance to the device
 - were very compatible with the use of the device (factor 10 for the worse case)
- For the tests on the field, formal documents are produced (CE certification, compliance with ISO standard)

Achievements

- First results in each research field
 - Innovative 3D acquisition sensors
 - Novel 3D and 2D algorithms
 - New approaches on face texture analysis
 - A unique multimodal face database available
 - Advanced techniques for facial template protection, implemented on state-of the-art algorithms
- First platform available for testing:
 - Algorithm test protocol and platform running at Fraunhofer-IGD
 - Intependant of the "developers"
- First integration of each component in a full prototype
 - component approach + fusion: flexibility for combination and update of the algorithms
 - first version ready for demonstration at the M24 review

- Obtaining the best algorithm combination for the field tests in 2008
 - intensive offline tests and algorithm improvement
- Be able to show the robusteness and accuracy gain linked to the use of 3D facial recognition
- Evaluate attack scenarios (spoofing) and design liveness tests (countermeasures)
- **Standards: provide the community (ISO/SC37, ICAO) with recommandation**
 - trade-off between size of the record and accuracy for compact storage unit
 - height of the person would be usefull in the chip

Obtaining a realistic operational evaluation

- participation of a large number of end-users
- several sessions for earch enrolee
- offline replay with several configurations
- Analyse end-users feedbacks when using the system
 - Comfort ? Ergonomics ?
 - Intrusiveness ? Privacy concerns ?
 - Gain for the user ?

3DFACE domain is increasing in importance

- recent NIST report FRVT2006
- report on template protection techniques from Privacy Information Commission, Canada

\Rightarrow critical importance of the 3DFACE project's mission

