

The face recognition company

Advances in Face Recognition Research

Presentation for the 2nd End User Group Meeting Juergen Richter – Cognitec Systems GmbH

For legal reasons some pictures shown on the presentation at the End User meeting had to be removed or replaced for this version.

Outline

- How does Cognitec's 3D Face Recognition work ?
- Resulting research tasks and achievements since start of the EU 3DFace project
- Conclusions for development and user scenarios

Face Recognition: Principal Approach

Characterization of Sensor Data

- Typically contains more than just the face
- Varying orientation in space (pose)
- Occasional data corruption (gaps, outliers, artefacts like ripples)
- Deformations of facial surface due to glasses, hairdo and beard

3D Face Recognition: Feature Extraction

- •Localize facial part of 3D shape
- •Align facial region to some defined orientation
- •Preprocess shape to eliminate data flaws (Smoothing)
- •Apply some feature extraction operator (Reduced dimension input for classification

3D Face Recognition: Localization

- Very accurate 2D feature finders available
- Task of feature localization much more difficult for 3D shapes

=> Use Power of 2D feature finders for 3D localization, too!

3D Face Recognition: Localization

Starting from 2D locations, find 3D locations by pixel – vertex correspondence

3D Face Recognition: Alignment

3D Face Recognition: Shape Preprocessing

Eliminate data flaws related to:

- Noise: deviations from true positions with some continuous random distribution
- Outliers: isolated points or groups of points with large deviation from true positions
- Gaps: locations where 3D data is missing at all
- Occlusions: particular sort of gaps in regions not available to sensor measurement

One algorithm fits all: 3D surface reconstruction by "Moving Least Squares"

Least Squares Method (1)

Linear Regression: Find line linearly approximating a set of points => minimize sum of squared distances

Least Squares Method (2)

Disadvantage: Sensitive to outliers!

3D Face Recognition: Moving Least Squares (MLS)

Local Least Squares Approximation

Cognitec

3D Face Recognition: Processing Steps

Sensor Data

Aligned

MLS smoothed

- Improvement of 2D Feature Finders (face finder, eyes finder)
- Implementation and optimization of MLS algorithm
- Optimization of classification algorithm

"Improvement" and "Optimization" both in terms of biometric performance, robustness and computing speed!

Selected Achievements: Face Finding

Face Finder Performance: % of faces not/incorrectly found			
Face Database	T6 (2006)	T8 (2008)	
Mainly frontal images, low variation in lighting:			
Cferet-frontal	0.1	0.04	
Internal 1	0.2	0.05	
Internal 2	0.3	0.2	
Strong variations in both pose and lighting:			
Weizmann	1.7	0.1	
Internal 3	0.3	0.1	

Selected Achievements: Recognition Performance

16

Cognitec

Selected Achievements: Computing Speed

MLS Surface (200x200) Computation Timings (sec) on Xeon 3220 (QuadCore, 2.4 GHz)

	1 Thread	4 Threads
1 st MLS version May 2006	20	n/a
MLS version in TDF Modules Dec 2007	6.8	1.8
Most recent MLS version Feb 2008	0.9	0.4

Avoidable Data Flaws

- Nonfrontal pose resulting in data gaps
- Occlusions caused by caps, dark glasses, strands of hair
- Data artefacts (ripples, gaps, outliers) caused by head motion during capture

Conclusions

For Sensor and Application Developers:

- Keep exposure time low
- Provide clear feedback on start and end of exposure phase
- Reduce processing times as far as possible

For user scenario: "Educate" cooperative user

- Look straight into sensor camera
- Keep neutral expression
- For time of exposure, try to freeze head movements
- Avoid occlusion of face (caps, dark sunglasses, hair)