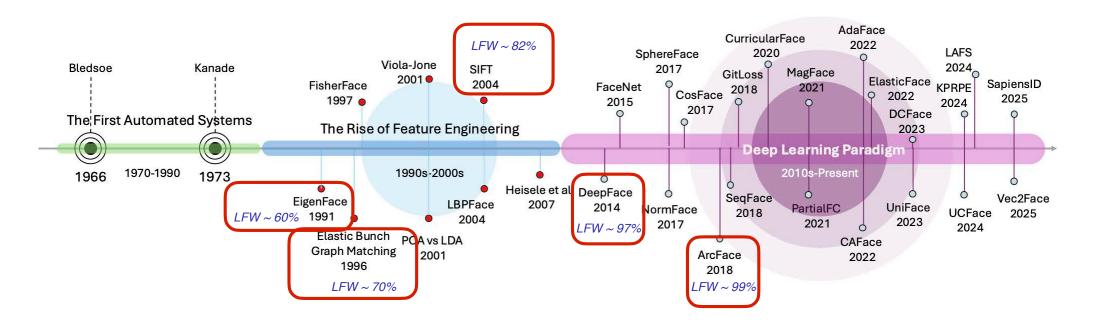
Challenges for Face Image Quality Assessment

Future Directions in Biometrics 2025-11-10

Christoph Busch copy of slides available at: https://christoph-busch.de/about-talks-slides.html

ATHENE / Hochschule Darmstadt, Germany
Norwegian University of Science and Technology (NTNU), Norway

- Pose
- Illumination
- Expression and Ageing

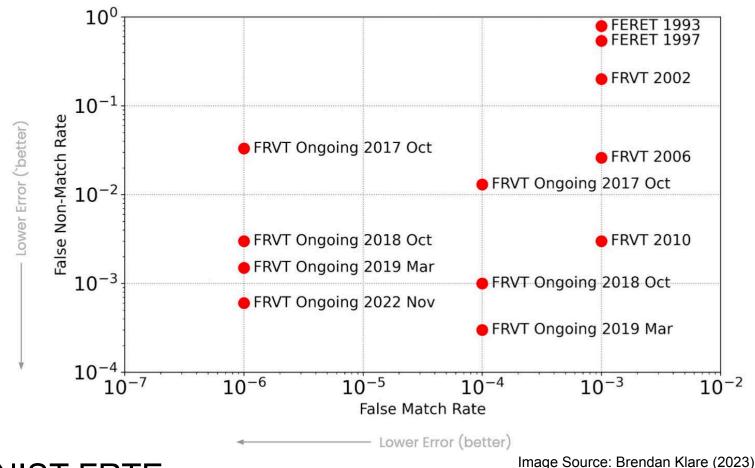

2001

2025

Evolution of Face Recognition Algorithms

Testing on challenging facial images

 Identification rate for Labeled Faces in-the-Wild (LFW) http://vis-www.cs.umass.edu/lfw/


[Kim2025] M. Kim, A. Jain, X. Liu: "50 Years of Automated Face Recognition", arXiv, (2025)

[Huang2007] G. Huang, M. Ramesh, T. Berg, E. Learned-Miller: "Labeled Faces in the Wild: A Database for Studying Recognition in Unconstrained Environments", TR, University of Massachusetts, (2007)

Progress of FR Algorithms Accuracy

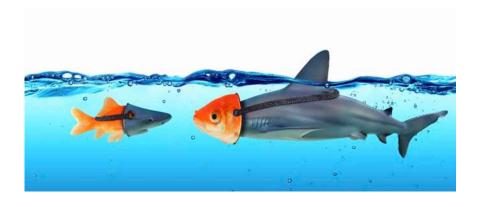
NIST: Face Recognition Technology Evaluations (FRTE)

Reduction of error rates

• NIST FRTE:

https://www.nist.gov/programs-projects/face-technology-evaluations-frtefate

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks



2001

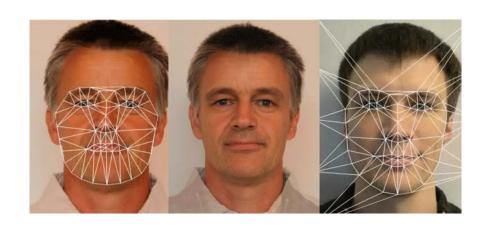
2025

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality

2001

2025

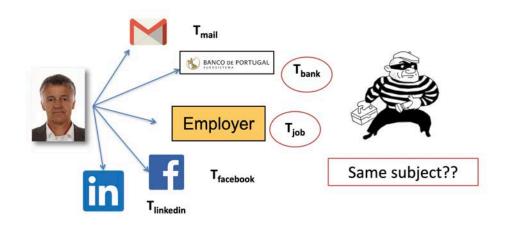
- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection



2001

2025

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection
- Biometric Template Protection



2001

2025

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection
- Biometric Template Protection
- Fairness of Algorithms

2001

2025

Critical factors for Face Recognition Systems (FRS):

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection
- Biometric Template Protection
- Fairness of Algorithms

2001

2025

[B2024] C. Busch: "Challenges for Automated Face Recognition Systems", in Nature Reviews Electrical Engineering, (2024), https://christoph-busch.de/files/Busch-NatureReview-ChallengesFRS-2024.pdf

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection
- Biometric Template Protection
- Fairness of Algorithms
- Recognition through the Windshield

2001

2025

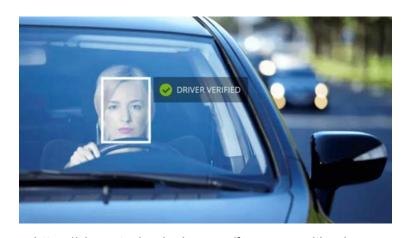


Image Source: https://visagetechnologies.com/face-recognition-in-cars

- Pose
- Illumination
- Expression and Ageing
- Presentation Attacks
- Face Image Quality
- Morphing Attack Detection
- Biometric Template Protection
- Fairness of Algorithms
- Recognition through the Windshield
- Face Recognition with 1KB Reference

2001

2025

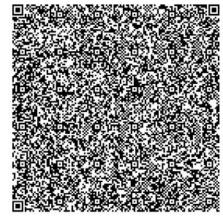


Image Source: Patrick Grother (2025)

Face Image Quality

Face Image Quality

Motivation for Face Image Quality Assessment (FIQA)

- Quality matters, especially in large-scale databases and with diverse application scenarios.
 - ▶ The European Entry Exit System (EES) will start October 2025
 - Will be applied to all external Schengen borders
 - Central register to record all entries/exists to the Schengen area https://travel-europe.europa.eu/ees en

- For each traveller a record with facial image and fingerprint images
- Operated by eu-LISA and 29 countries
- Standardisation of minimal quality and harmonisation is essential for (semantic) interoperability.

Quality Requirements for Facial Images

The requirement in EES implementing decision 2019/329

 "The quality of the facial images, … and with the image requirements of ISO/IEC 19794-5:2011 Frontal image type

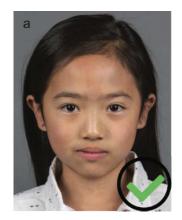
What does that mean?

Data subjects need actionable feedback

• If quality is poor, then what went wrong?

INTERNATIONAL STANDARD ISO/IEC 19794-5

> Second edition 2011-11-01


Information technology — Biometric data interchange formats —

Part 5:

Face image data

Technologies de l'information — Formats d'échange de données biométriques —

Partie 5: Données d'image de la face

Compliant image

Pose

Eyes open

Mouth open

Inhomogenous background

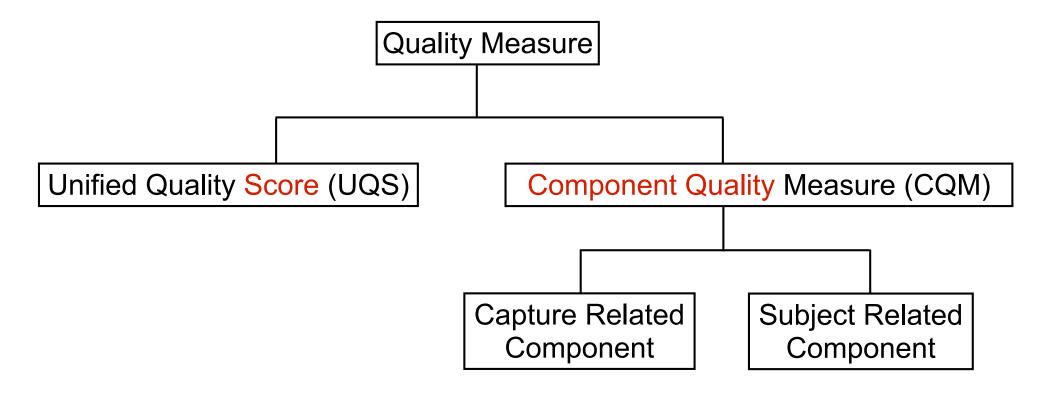
Source: ISO/IEC 39794-5

Measures for Facial Images

How to develop face image quality measures

- Standardisation
- International Organization for Standardization, ISO/IEC 29794-5, Information technology - Biometric sample quality -Part 5: Face image data,

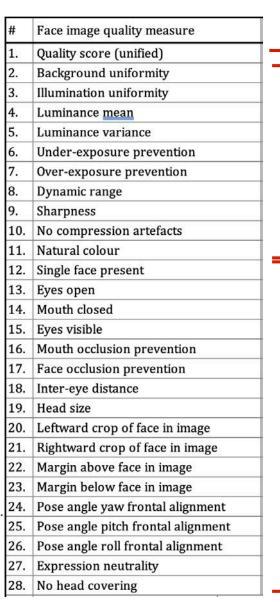
https://www.iso.org/standard/81005.html


- Providing measures for requirements from ISO/IEC 19794-5:2011 and ISO/IEC 39794-5:2019
 - Use-1: Reference image for MRTD
 - Use-2: Reference image for Live-Enrolment at EES Kiosk
 - Use-3: Probe images (e.g. ABC gate)

Quality Measures - Framework Standard

Quality assessment algorithms

According ISO/IEC 29794-1


https://www.iso.org/standard/79519.html

Higher UQS and CQM imply higher biometric utility

ISO/IEC 29794-5: Face Image Quality

ISO/IEC 29794-5 quality measures in detail

Unified Quality Score

Capture device related

Image Source: ISO/IEC 39794-5

Explainable Quality Assessment

Subject related

Image Source: ISO/IEC 39794-5

Image Source: ISO/IEC 29794-5

Open Source Face Image Quality (OFIQ)

Approach

- Library with quality assessment algorithms
- Open source https://github.com/BSI-OFIQ/OFIQ-Project
 - Commercial use is enabled and foreseen
- Support for major OS platforms (including mobile OS)
 - ▶ C/C++
- Serves as reference implementation of ISO/IEC 29794-5
 - Providing target values for conformance tests
- Selection criteria for integrated algorithms
 - Accuracy (NIST FATE SIDD evaluation) https://pages.nist.gov/frvt/reports/quality_sidd/frvt_quality_sidd_report.pdf
 - Low computational complexity
 - Liberal license (MIT or alike)

OFIQ - Unified Quality Score

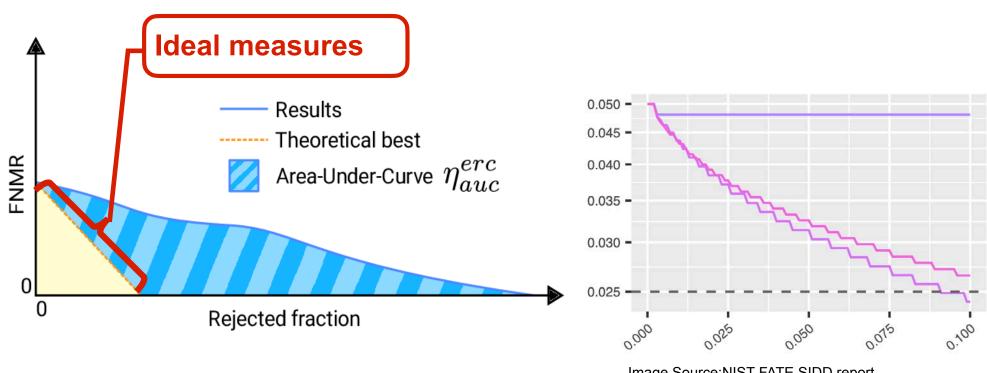
General, holistic unified quality score (OFIQ-UQS)

- Determine an overall quality score for the picture
 - CNN MagFace (iResNet 50 model)
- Shows good prediction of face recognition scores

OFIQ-UQS=84

OFIQ-UQS=61

OFIQ-UQS=26



OFIQ-UQS=7

OFIQ - Unified Quality Score

Prediction of low face recognition scores

- OFIQ is the best performing algorithm in NIST SIDD Error versus Discard Characteristic (EDC) curves
 - ▶ How much is the FNMR reduced, when poor images are discarded/rejected?

Open Source Face Image Quality (OFIQ)

Pre-processing for quality measures

- Face Detection: bounded box of all detected faces
- Face Landmark Estimation: localization of 98 key points
- Alignment: bring eyes on the same height
- Face Occlusion Segmentation: identify un-occluded region
- Face Parsing: identify different regions of subject in the image (eyes, eye brows, nose, lips, skin / neck, ears, hair / glasses, clothes, hats, earrings, necklaces / background)

Image Source: OFIQ public report and ISO/IEC FDIS 29794-5

Example algorithm: Sharpness

- Detecting the sharpness of an image
- Is the subject in focus or the background?

Image Source: FRGCv2 database

- Restricted to landmarked region
 - Laplacian Filter
 - Random Forest classifier

Image Source: OFIQ public report

Example algorithm: Mouth Closed

- Detecting if the most is closed
- Algorithms based on landmarks
- Maximum distance between lips

$$D_{L} = \max(\|L_{89} - L_{95}\|_{2}, \|L_{90} - L_{94}\|_{2}, \|L_{91} - L_{93}\|_{2})$$

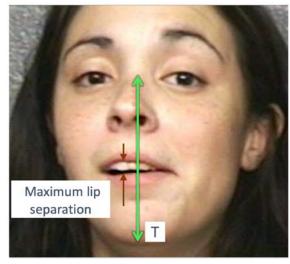
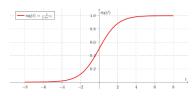



Image Source:NIST FATE SIDD report

- Normalized by distance T between eye's midpoint and chin
- Mouth opens aspect

$$\omega = \frac{D_L}{T}$$

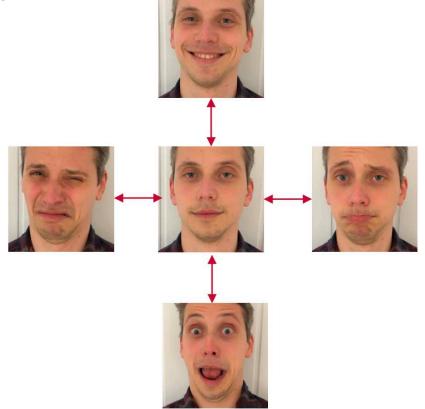
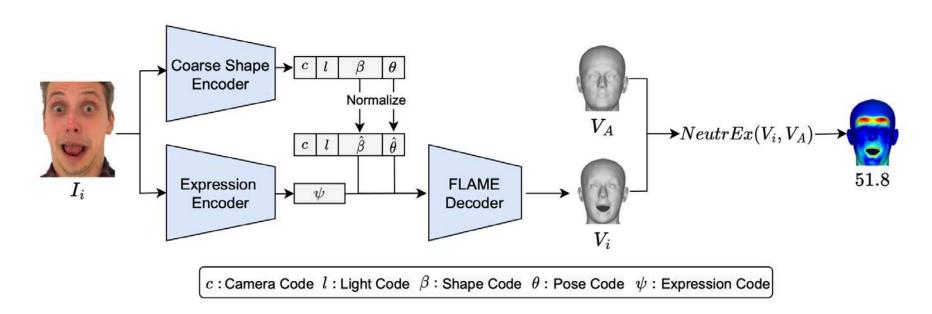

 $Q = \text{ROUND}(100(1 - \text{SIGMOID}(\omega, 0.2, 0.06)))$

Image Source: ISO/IEC 29794-5

Quality Component: Expression Neutrality

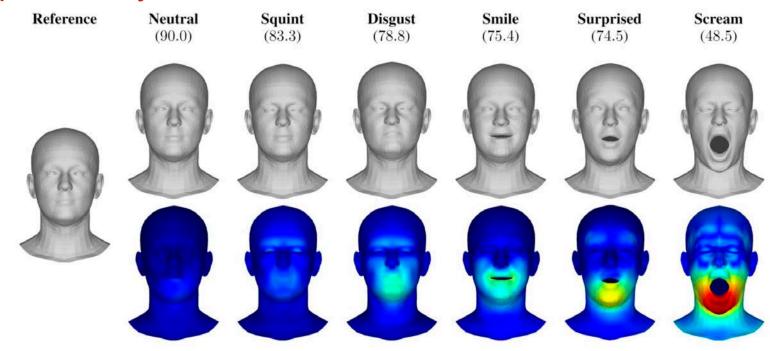
- Expression neutrality as quality component
 - Reduced biometric performance for extreme facial expressions
- Known fact:
 - Best-possible utility through neutral expressions
- Goal:
 Quantify expression neutrality



[GRVB2023] M. Grimmer, C. Rathgeb, R. Veldhuis, C. Busch: "NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality", in Proceedings of International Joint Conference on Biometrics (IJCB), (2023)

[GVB2024] M. Grimmer, R. Veldhuis, C. Busch: "Efficient Expression Neutrality Estimation with Application to Face Recognition Utility Prediction", in Proceedings of 12th International Workshop on Biometrics and Forensics, (2024)

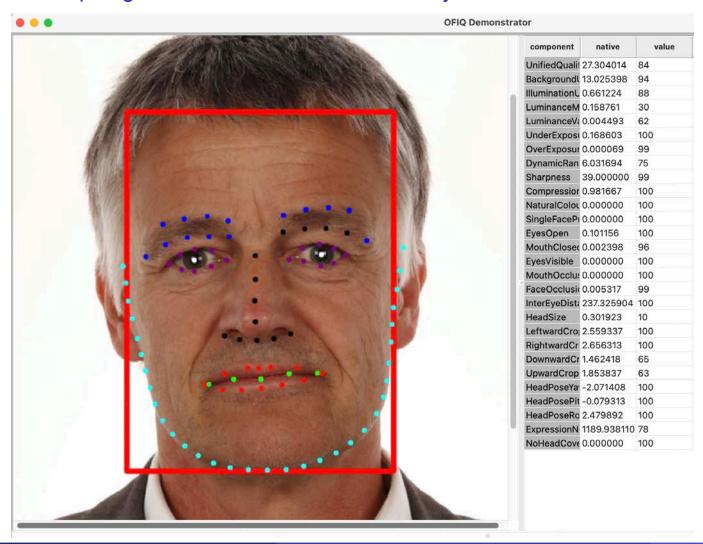
Example algorithm: Expression Neutrality


- 3D Monocular Face Reconstruction
 - Invert 2D face image into FLAME parameter space
 - Inversion achieved through Resnet50 encoders
 - Coarse Shape Encoder (DECA) and Expression Encoder (EMOCA)

[GRVB2023] M. Grimmer, C. Rathgeb, R. Veldhuis, C. Busch: "NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality", in Proceedings of International Joint Conference on Biometrics (IJCB), (2023)

Example algorithm: Expression Neutrality

- Cumulative 2-Norm Distances: $D(V_i, V_A) = ||V_i V_A||_2$
- NeutrEx Measure: NeutrEx $(V_i, V_A) = 100 \cdot (1 \frac{D(V_i, V_A) D_{min}}{D_{max} D_{min}})$
- Quality measure between [0, 100]
- Explainability


[GRVB2023] M. Grimmer, C. Rathgeb, R. Veldhuis, C. Busch: "NeutrEx: A 3D Quality Component Measure on Facial Expression Neutrality", in Proceedings of International Joint Conference on Biometrics (IJCB), (2023)

OFIQ - Demonstrator

Demonstrator to understand the processing

Available in GitHub:

https://github.com/BSI-OFIQ/OFIQ-Project

Face Image Quality - Future work

Open research tasks for OFIQ 2

- Further innovation of quality measures
- Add missing components
 - Motion blur
 - Gaze estimation
 - **...**

Image Source: ISO/IEC 39794-5 Annex D1

Investigate demographic variability

Outlook for OFIQ

Perspective

- OFIQ will (likely) replace the proprietary FIQA
 - wherever used
 - avoid a vendor-lock-in
- OFIQ 2.0 project has already started

Take home information on face image quality

- OFIQ open source code: https://github.com/BSI-OFIQ/OFIQ-Project
- OFIQ public report
 https://github.com/BSI-OFIQ/OFIQ-Project/blob/main/doc/reports/Public_Report_V1.1_2024_09_30.pdf
- NIST test report: https://pages.nist.gov/frvt/reports/quality_sidd/frvt_quality_sidd_report.pdf
- Face image quality website:
 https://christoph-busch.de/projects-ofiq.html
- OFIQ user group meeting 2026-01-20: https://eab.org/events/program/390

Fairness of Algorithms

Image Source: https://www.flaticon.com (2020)

Demographic Factors

What is fairness?

- Dictionary:
 "the quality of treating people equally or in a way that is right or reasonable"
- Movie Coded Bias

Image Source: Netflix

An inherently ethical and social concept

- Influenced by cultural, historical, legal, religious, personal, and other factors
- Challenging to develop mathematical definitions
- However, everyone wants to be treated "fairly"

Reaching out towards group fairness

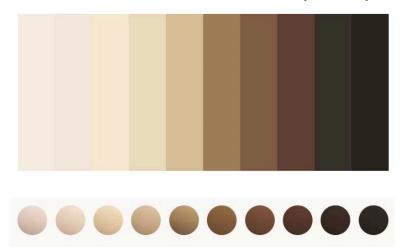
Demographic groups: gender, age, skin tone, glasses etc.

Demographic Effects

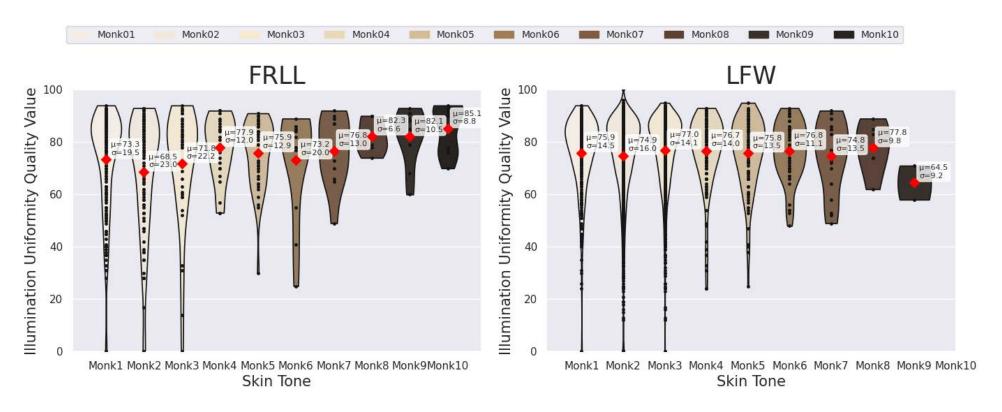
Current findings for facial biometric characteristics

- Most studies observed influence of demographic variables on biometric recognition.
 - Generally, lower biometric performance was consistently observed for females and children
 - The country of algorithm development (and hence training data) may be a large factor in this context.

International Standard

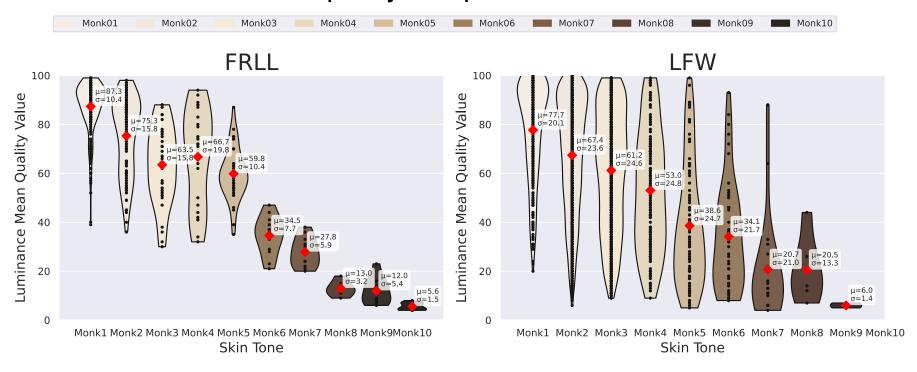

• ISO/IEC 19795-10 https://www.iso.org/standard/81223.html

[Drozd2020] P. Drozdowski, C. Ratgeb, A. Dantcheva, N. Damer, C. Busch: "Demographic Bias in Biometrics: A Survey on an Emerging Challenge", in IEEE Transactions on Technology and Society (TTS), (2020)


Open research tasks

- Investigate demographic variability (DV)
- Example: skin tone variation
 Continuous demographic variable
- Collect data and organic in discrete categories
 - Monk skin tone scale (MST) vs.
 - Colorimetric skin ton (CST) vs.
 - PANTONE Skin Tone (PST)

Open research tasks


- Investigate variability across demographic groups
 - Distribution of unified quality score (UQS)

[KRRB2024] W. Kabbani, K. Raja, R. Raghavendra, C. Busch: "Demographic Differentials in Face Image Quality Measures", in Proceedings of the IEEE 23rd International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, September 25-27, (2024)

Open research tasks

- Investigate variability across demographic groups
 - Distribution of component quality measures (CQM) Luminance Mean quality component values:

[KRRB2024] W. Kabbani, K. Raja, R. Raghavendra, C. Busch: "Demographic Differentials in Face Image Quality Measures", in Proceedings of the IEEE 23rd International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, September 25-27, (2024)

Open tasks to investigate DV on operational data

- Distribution of UQS and CQM
- ▶ ISO/IEC TR 25722
 - https://www.iso.org/standard/91308.html
 - https://www.iso.org/committee/313770.html?t=pbkdp2EjRvj8aKJD_DJuyD-UVGVhaafFTG1SHYW1UKrmbchG6jLf6jqoqARosEWf&view=documents# section-isodocuments-top

ISO/IEC JTC 1/SC 37/WG 3 N 1767

ISO/IEC JTC 1/SC 37/WG 3 "Biometric data interchange formats"

Convenorship: **DIN**

Convenor: Busch Christoph Mr Prof. Dr.

2nd WD 25722 Demographic variability of face image quality measures

 Document type
 Related content
 Document date
 Expected action

 Project / Draft
 Project: ISO/IEC AWI TR 25722
 2025-08-25
 COMMENT/REPLY by 2025-10-03

FRS with 1KB reference Micro-Container

Containers have limited capacity

- Contact less IC Chip
 - ▶ ICAO 9303 passports
 - ISO/IEC14443
 - ▶ Target size: 32 Kbyte
- 2D Barcode
 - Temporary travel document
 - Temporary residence permit
 - ISO/IEC 18004:2024 QR code
 - ISO/IEC 16022:2024 Data Matrix
 - ISO/IEC 24778:2024 Aztec code
 - ISO/IEC 15438:2015 PDF417
 - ISO/IEC 16023:2000 Maxicode
 - Target size: 1Kbyte

Temporary eMRTD

Surname: Busch

Givename Christoph Nationality: German

DoB: yyyymmdd

PoB: Frankfurt

DoE: yyyymmdd

Preprocessing

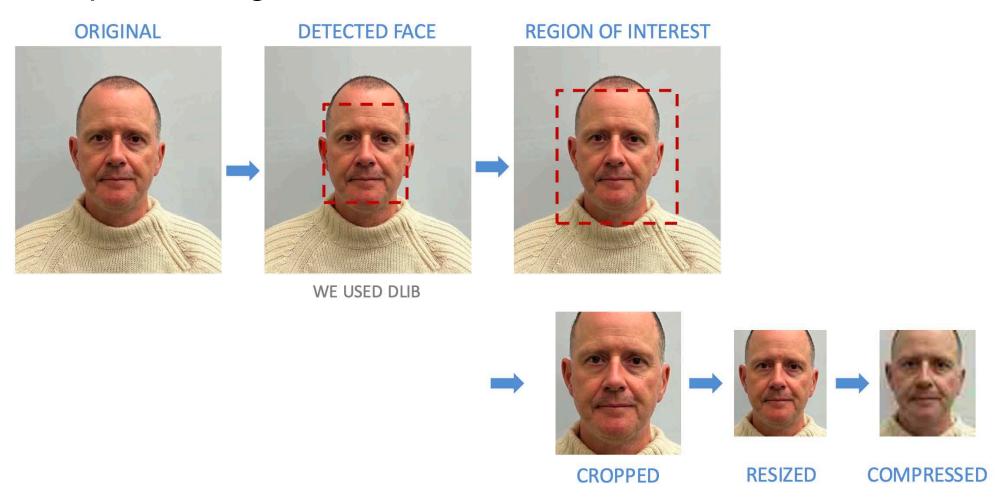


Image Source: Patrick Grother (2025)

Impact of Lossy Image Compression

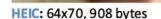
- Encoding options:
 - ▶ ISO/IEC 10918 JPEG
 - ▶ ISO/IEC 15444 JPEG 2000
 - ▶ ISO/IEC 23008-12 HEIC
 - ISO/IEC 18181 JPEG-XL

- ▶ WEBP Image Format IETF RFC 9649 2024-11-12
- ▶ ISO/IEC 23000-22 AVIF

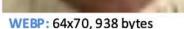
[Schlett2023] T. Schlett, S. Schachner, C. Rathgeb, J. Tapia, C. Busch: "Effect of Lossy Compression Algorithms on Face Image Quality and Recognition", in Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, GR, June 4-10, (2023)

https://arxiv.org/pdf/2302.12593

Impact of Lossy Image Compression


TARGET FILE SIZE: 960 BYTES

ORIG: 1205x1326 509697 bytes



Factors:

- Effect on FR accuracy
- Effect on human reviewer perception
- Decoder availability
- IP / License / Cost

Image Source: Patrick Grother (2025)

AVIF: 64x70, 919 bytes

Get involved in the standardisation

ISO/IEC JTC 1/SC 37 N 7848

ISO/IEC JTC 1/SC 37 "Biometrics"

Secretariat: ANSI

Committee manager: Miller Michaela Ms

Ballot text for NP 59794-5, Information technology – Compact biometric samples for 2D barcodes – Part 5: Face image data

Document type	Related content	Document date	Expected action
Ballot / Form	Ballot: <u>ISO/IEC PWI 59794-5</u> (restricted access)	2025-08-11	VOTE by 2025-11-04

Conclusion

Summary

- Face image quality assessment is accurately possible with open source algorithms
 - OFIQ provides explainable feedback to the user on why a face image is of insufficient quality
- We need to investigate demographic variability of all biometric algorithms
- Face recognition with 1KB reference samples is a new challenge for research

Questions and Answers?

Take home information:

- Face image quality website:
 - https://christoph-busch.de/projects-ofiq.html
- Morphing attack detection website:

https://christoph-busch.de/projects-mad.html

Prof. Dr. Christoph Busch

Norwegian University of Science and Technology Department of Information Security and Communication Technology Teknologiveien 22 2802 Gjøvik, Norway

Email: christoph.busch@ntnu.no

Phone: +47-611-35-194