Face Morphing Attack Detection in the iMARS Project #### **Christoph Busch** copy of slides available at: https://christoph-busch.de/about-talks-slides.html more information at: https://christoph-busch.de/projects-mad.html latest news at: https://twitter.com/busch_christoph NIST-IFPC, October 28, 2020 # Passports and Identity Cards of European Union Citizens # Standardised Travel Documents #### **Passports** - Regulation 2252/2004 - face image - two fingerprint images ### Identity Cards of European Union Citizens - Regulation 2019/1157 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1157 - face image - two fingerprint images # ICAO 9303 Logical Data Structure ### Data stored on the chip (LDS) - DG1: Information printed on the data page - DG2: Facial image of the holder (mandatory) - DG3: Fingerprint image of left and right index finger - DG4: Iris image - DG15: Active Authentication Public Key Info - DG16: Persons to notify **Document Security Object** Hash values of DGs | | | | | DA | TA EL | EMENTS | | |--|------------------------------------|---|--|---------------------------------------|--------------------------------------|-------------------|--| | REQUIRED | ISSUING STATE OR ORGANIZATION DATA | Detail(s)
Recorded
in
MRZ | | Document Type | | | | | | | | | Issuing State or organization | | | | | | | | DG1 | Name (of Holder) | | | | | | | | | Document Number | | | | | | | | | Check Digit - Doc Number | | | | | | | | | Nationality | | | | | | | | | Date of Birth | | | | | | | | | Check Digit - DOB | | | | | | | | | Sex | | | | | | | | | Data of Expiry or Valid Until Date | | | | | | | | | Check Digit DOE/VUD | | | | | | | | | Optional Data | | | | | | | | | Check Digit - Optional Data Field | | | | | | | | Glob | | posite Check Digit DG2 Encoded Face | | | | | ISSUING STATE OR ORGANIZATION DATA | Encoded
Identification
Feature(s) | Global Interchange
Feature Additional Feature(s) | | DG2 | Encoded Finger(s) | | | | | | | | DG4 | Encoded Eye(s) | | | | | Displayed
Identification
Feature(s) | DG5 | Dis | Displayed Portrait | | | | | | | DG6 | Reserv | ed for l | Future Use | | | | | | DG7 | Displayed Signature or Usual Mark | | ure or Usual Mark | | | AL | GAN | Encoded
Security
Feature(s) | DG8 | Data Feature(s) | | ature(s) | | | OPTIONAL | STATE OR OR | | DG9 | Structure Feature(s) | | eature(s) | | | | | | DG10 | Substance Feature(s) | | Feature(s) | | | 0 | | | DG11 | Additional Personal Detail(s) | | rsonal Detail(s) | | | | NG | | DG12 | Additional Document Detail(s) | | | | | | SSU | DG1 | | Optional Detail(s) | | | | | | = | | DG14
DG15 | Security Options | | | | | | | | | Active Authentication Public Key Info | | | | | Person(s) to Notify Source: ICAO 9303 Part 10, 2015 | | | | | | to Notify | | Source: ICAO 9303 Part 10, 2015 # ICAO 9303 Logical Data Structure #### Data to be stored in the RFID-Chip - Alpha-numeric data: 5 Kbyte - Facial image: ISO/IEC 19794-5:2005 - ▶ 12 Kbyte (JPEG, JPEG2000) - Fingerprint images: ISO/IEC 19794-4:2005 - 2* 10 Kbyte (JPEG, JPEG2000, WSQ) - Facial image: ISO/IEC 39794-5:2019 https://www.iso.org/standard/72155.html **New in 2020** - Fingerprint images: ISO/IEC 39794-4:2019 https://www.iso.org/standard/72156.html - ▶ ICAO will adopt its 9303 specification in 2020 and refer to ISO/IEC 39794 and its Parts 1, 4 and 5 by December 2020. - Passport reader equipment must be able to handle ISO/IEC 39794 data by 2025-01-01 (5 years preparation period). - Between 2025 and 2030, passport issuers can use the old version or the new version of standards (5 years transition period). # Is the Principle valid on the left Side? # Principle of equality - in our society One individual - one passport ## Principle of unique link of ICAO One individual - one passport image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/ # Is the Principle valid on the left Side? ### Principle of equality - in our society One individual - one passport ### Principle of unique link of ICAO One individual - one passport ICAO 9303 part 2, 2006: "Additional security measures: inclusion of a machine verifiable biometric feature linking the document to its legitimate holder" # Is the Principle valid on the left Side? Principle of unique link of ICAO One individual - one passport We don't want this principle of unique link to be broken Multiple individuals - one passport image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/ # Problem: Morphing Attacks Is it a really problem? MAD and the iMARS project # Problem: Morphing Attacks Is it a really problem? - YES! - In September 2018 German activists - used a morphed images of Federica Mogherini (High representative of the European Union for Foreign Affairs and Security Policy) and a member of their group - and received an authentic German passport. Image source: https://www.spiegel.de/netzwelt/netzpolitik/biometrie-im-reisepass-peng-kollektiv-schmuggelt-fotomontage-in-ausweis-a-1229418.html # Problem: Morphing Attacks #### Message in December 2015: "Brussels - we have a problem!" #### Proposed solutions to the Morphing Attack Problem: - 1.) Photo studio should digitally sign the picture taken by Photo Studio and send it to the passport application office - this is in progress for Finland - 2.) Switch to live enrolment - that is the case for Norway and Sweden - 3.) Software-supported detection of morphed face images ### Regarding 2.) EU Regulation 2019/1157: on strengthening the security of identity cards in recital 32 states: "... To this end, Member States could consider collecting biometric identifiers, particularly the facial image, by means of live enrolment by the national authorities issuing identity cards." # Morphing Attack Detection Scenarios #### Real world scenarios - Single image morphing attack detection (S-MAD) - One single suspected facial image is analysed (e.g. in the passport application) [SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS), April 24-27, (2018) # Morphing Attack Detection Scenarios #### Real world scenarios - Single image morphing attack detection (S-MAD) - One single suspected facial image is analysed (e.g. in the passport application) - Differential morphing attack detection (D-MAD) - A pair of images is analysed and one is a trusted Bona Fide image - Biometric verification (e.g. at the border) [SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS), April 24-27, (2018) # State of the Art - MAD Algorithms #### Taxonomy of Morphing Attack Detection [SRMBB2019] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems under Morphing Attacks: A Survey", in IEEE Access, (2019) # **MAD** Evaluation # Standardized Testing Metrics # Definition according to ISO/IEC 30107-3 - Testing the false-negative and false-positive errors: - Attack presentation classification error rate (APCER) proportion of attack presentations using the same PAI species incorrectly classified as bona fide presentations in a specific scenario - Bona fide presentation classification error rate (BPCER) proportion of bona fide presentations incorrectly classified as attack presentations in a specific scenario source: [ISO/IEC 30107-3] SO/IEC 30107-3, "Biometric presentation attack detection - Part 3: Testing and reporting", (2017) https://www.iso.org/standard/67381.html # Standardized Testing Metrics #### Definition of metrics in ISO/IEC 30107-3 - DET curve analyzing operating points for various thresholds and plot security measures versus convenience measures - Example: Source: R. Raghavendra, K. Raja, S. Venkatesh, C. Busch: "Transferable Deep-CNN features for detecting digital and print-scanned morphed face images", in Proceedings of 30th International Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2017), Honolulu, Hawaii, July 21-26, (2017) # Face Morphing Attack evaluations are complex - Evaluations must consider a dedicated methodology [SNR2017] - Evaluations must consider many parameters ``` result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing) ``` [SNR2017] U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, September 20-22, (2017) # Evaluations must consider many parameters Morphing may require manual interaction (not desired) result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing) Automated face morphing tools may introduce artifacts # In our evaluation we use - Dlib / OpenCV - FaceMorpher ### Evaluations must consider many parameters Postprocessing might conceal morphing effects (e.g. smoothing) ``` result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing) ``` smoothing and other effects might be compensated by the attacker ### Evaluations must consider many parameters The hardware selected for printing and scanning ``` result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing) ``` the image in the passport will be impacted by fidelity and resolution of the hardware # Issuing process for the passport in most countries: applicant submit a printed photo # MAD Evaluation in SOTAMD # EU funded project: February 2019 – January 2020 - Partners: - National Office for Identity Data, NL, Bundeskriminalamt (BKA), DE - University of Bologna (UBO), IT, Hochschule Darmstadt (HDA), DE - ▶ The University of Twente (UTW), NL, NTNU, NO # Specific objectives: - Capture face images from 150 subjects - with photo equipment and - automated border control gates Generate morphed face images with at least 3 algorithms MAD and the iMARS project - Post-process automatically and manually - Print and scan all morphed face images - Test the MAD algorithms on the Bologna server https://biolab.csr.unibo.it/FVConGoing # D-MAD Evaluation in SOTAMD #### SOTAMD achievements A new benchmark area for differential morphing attack detection - Two benchmarks to evaluate different image types: - Digital or Printed/Scanned images - Possibility of analysing results according to specific factors: - Manual or automatic morphing - Morphing approaches and parameters (e.g., morphing factor) - Gender, ethnicity, age, etc. # SOTAMD compliance with NIST-FRVT-MORPH #### NIST realized FRVT MORPH an ongoing independent testing of face morph detection technologies. https://www.nist.gov/programs-projects/frvt-morph #### The SOTAMD consortium decided to define - a testing protocol perfectly compatible with the NIST interface, - in order to minimize the effort for developers and - promote the submission of algorithms to both evaluation platforms. # NIST only accepts Linux dynamically-linked library file; FVC-onGoing accepts both Windows and Linux executables # **SOTAMD** Results # A database with variety of morphing algorithms and automated and manual post-processing #### Demographics | Geno | der | Age | | | | | | | |-----------|---------|-------------|------------|----------------|--|--|--|--| | Male | Female | A18-A35 | A36-A55 | A56-A75 | | | | | | 86 | 64 | 87 | 47 | 16 | | | | | | Ethnicity | | | | | | | | | | European | African | India-Asian | East-Asian | Middle-Eastern | | | | | | 96 | 26 | 10 | 9 | 9 | | | | | Number of images with morphing and manual post-processing | | Automated
Morphing | Manually
post-
processed | Total | |----------------------|-----------------------|--------------------------------|-------| | Digital images | 1475 | 570 | 2045 | | Printed &
Scanned | 1453 | 2250 | 3703 | | Total | 2928 | 2820 | 5748 | [Raja2020] K. Raja, M. Ferrara, A. Franco, L. Spreeuwers, I. Batskos, F. Wit, M. Gomez-Barrero, U. Scherhag, D. Fischer, S. Venkatesh, J. Singh, G. Li, L. Bergeron, S. Isadskiy, R. Raghavendra, C. Rathgeb, D. Frings, U. Seidel, F. Knopjes, R. Veldhuis, D. Maltoni, C. Busch: "Morphing Attack Detection - Database, Evaluation Platform and Benchmarking", in IEEE Transactions on Information Forensics and Security (TIFS), (2020) https://arxiv.org/abs/2006.06458 # **SOTAMD** Results ### Detection accuracy - focused on D-MAD https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/BenchmarkAreas/BenchmarkAreaDMAD.aspx #### Digital #### Print and scanned D-MAD-SOTAMD P&S-1.0. [Raja2020] K. Raja, M. Ferrara, A. Franco, L. Spreeuwers, I. Batskos, F. Wit, M. Gomez-Barrero, U. Scherhag, D. Fischer, S. Venkatesh, J. Singh, G. Li, L. Bergeron, S. Isadskiy, R. Raghavendra, C. Rathgeb, D. Frings, U. Seidel, F. Knopjes, R. Veldhuis, D. Maltoni, C. Busch: "Morphing Attack Detection - Database, Evaluation Platform and Benchmarking", in IEEE Transactions on Information Forensics and Security (TIFS), (2020) https://arxiv.org/abs/2006.06458 The iMARS Project Summary # The Key Figures ### iMARS project - Start date: 1 September 2020 - End date: 31 August 2024 - H2020-SU-SEC-2019 - Grant agreement ID: 883356 - Programme(s): - ▶ H2020-EU.3.7.3. Strengthen security through border management - H2020-EU.3.7.8. Support the Union's external security policies including through conflict prevention and peace-building - Topic: - ► SU-BES02-2018-2019-2020 Technologies to enhance border and external security - Overall budget: € 6 988 521,25 - Website: https://cordis.europa.eu/project/id/883356 # The Consortium #### 24 Partners - IDM IDEMIA IDENTITY & SECURITY FRANCE (FR) - DG IDEMIA IDENTITY & SECURITY GERMANY (DE) - COG COGNITEC SYSTEMS GMBH (DE) - VIS VISION BOX (PT) - MOB MOBAI AS (NO) - ART ARTTIC (FR) - SUR SURYS (FR) - NTN NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NO) - UBO UNIVERSITA DI BOLOGNA (IT) - HDA HOCHSCHULE DARMSTADT (DE) - KUL KATHOLIEKE UNIVERSITEIT LEUVEN (BE) - IBS INSTITUTE OF BALTIC STUDIES (EE) - EAB EUROPEAN ASSOCIATION FOR BIOMETRICS - KEM KENTRO MELETON ASFALEIAS (EL) - BKA BUNDESKRIMINALAMT (DE) - NOI MINISTERIE VAN BINNENLANDSE ZAKEN (NL) - INC IMPRENSA NACIONAL (PT) - POD POLITIDIREKTORATET (NO) - PBP PORTUGUESE IMMIGRATION AND BORDERS SERVICES (PT) - HEP HELLENIC POLICE (EL) - CYP CYPRUS POLICE (CY) - PBM BORDER POLICE OF THE REPUBLIC OF MOLDOVA (MD) - BFP POLICE FEDERALE BELGE (BE) # The Objectives ### Technologies to enhance border and external security - The iMARS project will provide: - Image Morphing and manipulation Attack Detection (MAD) solutions to assess ID documents validity against document fraud. - focus on attacks during enrolment steps and at the border crossing stations - Document Verification and Fraud Detection (DVFD) solutions to support border guards in the verification process by providing mobile tools and training. - The solutions developed in iMARS will: - focus on electronic ID documents - be flexible enough to enable the integration with existing solutions and serving various use cases: - ID Document application or renewal - border control - forensic investigation of ID Documents. Understanding the different types of document fraud #### LOOKALIKE Used by someone other than the legitimate owner, based on physical #### FRAUDULENTLY through false supporting documents or corruption A genuine document with COUNTERFEITED An entirely fabricated STOLEN BLANK from an administration and filled with the client's biographical data # The iMARS Research ### The iMARS overall concept # The Work Packages The iMARS work packages dependencies What needs to be done - after the SOTAMD project is completed? - 1.) Establish consensus amongst stakeholders - Europe should immediately start an action to secure - the trusted link between a MRTD and the document holder meaning to switch to live enrolment! - Note: The German parliament is discussing a revision of the passport law these days - and to develop and deploy technical mechanisms that can detect a morph passport at borders. - Support the iMARS-consortium, that is ready to jointly work on the morphing challenges - iMARS is a pan-European approach that is supported by the European Association for Biometrics (EAB) - 2.) Standardise the passport application process - A European regulation should enforce that all Member States switch to live enrolment, as it is already operational e.g. in Norway and Sweden. - Only then, with full control of the biometric capture process by a civil servant in the passport application office, trust in the link of passport holder to reference data can be assured. - The iMARS consortium has proposed to define a secure ID Document application process: - Make it difficult to apply for an ID document with a photograph that has been morphed or manipulated otherwise (e.g. data subjects want to look younger) - ▶ Take precautions to detect a case that someone tries to enrol with a well-crafted facemask (avoid a presentation attack with a morphed face image on the mask) - The capture device certification scheme will be recorded in the data record, as defined in the new extensible interchange format ISO/IEC 39794-5 # MAD Action Plan - iMARS Project - 3.) Detect automatically Morph Passports at Borders - After the completed transition to live enrolment in all MS we must anticipate that European passports - potentially containing a morphed image are presented at least for the next 10 years. - Robust border control processes based on a differential morphing attack analysis, where the quality of probe image varies. - Trusted live capture images must be in realistic degraded quality! # MAD Action Plan - iMARS Project - 3.) Detect automatically Morph Passports at Borders - After the completed transition to live enrolment in all MS we must anticipate that European passports - potentially containing a morphed image are presented at least for the next 10 years. - Robust border control processes based on a differential morphing attack analysis, where the quality of probe image varies. - Trusted live capture images must be in realistic degraded quality! Explicit and implicit D-MAD algorithms - 4.) Detect Morph Passports in Forensic Investigations - A forensic investigator has a single image only - In support of forensic investigations, we need single image MAD - also known as no-reference MAD or forensic MAD - explicit MAD and implicit MAD with transfer learning - trained with large-scale face morph databases. - based on the relatively low-resolution digital image stored in the passport, - print and scan MAD robustness - fusion of multiple MAD subsystems. - 5.) Compose Test Data and Online Evaluation Platform - Testing of MAD solution can't be done without appropriate data. - Need for an iMARS mixed quality dataset and diversification - more subjects - more enrolment processes / print and scan equipment - more morphing tools - high AND controlled degrading quality - Augment the Bologna-Online-Evaluation-Platform (BOEP) - Provide open access benchmark tests. - ▶ Include S-MAD evaluation: https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/BenchmarkAreas/BenchmarkAreaSMAD.aspx - ▶ Thus national border control agencies will be able to evaluate if the MAD State-of-the Art meets the operational requirements. #### 6.) Standardise Testing of MAD Solutions - Find consensus, how we test - Measures for vulnerability and detection accuracy - Morphing vulnerability metric based on the Mated-Morph-Presentation-Match-Rate (MMPMR) - anchor the MAD evaluation methodology in the ISO/IEC 30107 multipart standard - Find consensus in the MAD research community - Standardise metrics to evaluate the performance of MAD methods - APCER Attack Presentation Classification Error Rate - BPCER Bona Fide Presentation Classification Error Rate - corresponding DET-Plots - Border control agencies of EU Member State shall be motivated to participate in this standardisation process # MAD Action Plan - iMARS Project - 7.) Develop Face Image Quality Metrics - We need the equivalent to NFIQ2.0 for facial images - Ensure that captured samples that are sufficiently good in terms of illumination, sharpness, or pose - Align with the framework for biometric sample quality described in ISO/IEC 29794-1:2016 - align with ISO/IEC NP 29794-5 https://www.iso.org/standard/81005.html - Develop an automatic face image quality assessment software, - which can predict recognition accuracy - Once predictive face quality metrics are available, - MAD evaluation can be adapted to the three relevant scenarios (ID Document issuance, border control, and forensic investigation) - we can report the impact of face image quality on morphing attack detection # 8.) Train Communication Personnel and Border Officers - Train the agencies staff, how to react - to mitigate public excitement and explain attack resolving solutions against morphing attacks, - Develop best practices for improving the officers' skills on manipulated/morphed image and document fraud detection - show to border guards that the MAD tools will not replace, but complement, their expertise. ^{*} You can take a break at any time during this experiment by clicking 'Continue later' button. You can continue this experiment using the following URL: # Thanks ### I would like to thank the sponsors of this work: - NGBS-Project funded by ATHENE - SWAN-Project funded by RCN - FACETRUST-Project funded by BSI - SOTAMD-Project funded by the European Union's Internal Security Fund — Borders and Visa - iMARS-Project has received funding from the European Union's H2020 research and innovation programme under grant agreement No 883356 - The content of this presentation represents the views of the author only and is his sole responsibility. The European Commission does not accept any responsibility for use that may be made of the information it contains. # Conclusion ### We are facing a situation, where - Passports with morphs are already in circulation - ▶ 1000+ reported cases - Switch to live enrolment is a good decision, but does not solve the problem - Passports with morphed face images will have a major impact on border security (introduction of EU's entry/exit system, global migration flows) - In combination with passport brokers a dramatic problem - the darknet offers numerous such opportunities ... # More information #### The MAD website https://www.christoph-busch.de/projects-mad.html ### The MAD survey paper U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems under Morphing Attacks: A Survey", MAD and the iMARS project in IEEE Access, (2019) # Contact Prof. Dr. Christoph Busch Norwegian University of Science and Technology Department of Information Security and Communication Technology Teknologiveien 22 2802 Gjøvik, Norway Email: christoph.busch@ntnu.no Phone: +47-611-35-194 # Contact Prof. Dr. Christoph Busch Principal Investigator Hochschule Darmstadt FBI Haardtring 100 64295 Darmstadt, Germany christoph.busch@h-da.de Telefon +49-6151-16-30090 https://dasec.h-da.de https://www.athene-center.de