Secure Access Control over Wide Area Network - IKTPLUS Project SWAN

Raghu Ramachandra, Martin Stokkenes, Pankaj Wasnik, Christoph Busch

Norwegian University of Science and Technology - Gjøvik
http://www.christoph-busch.de

Finse Winter School - April 26, 2016
Norwegian Biometrics Laboratory (NBL)

• Faculty-Members:
 › Christoph Busch
 › Patrick Bours
 › Bian Yang
 › Faouzi Alaya Cheikh
 › Sule Yildirim
 › Erik Hjelmås
 › Raghu Ramachandra
 › Katrin Franke (adjunct member)
 › Ivar Farup (adjunct member)
 › Mohammad Derawi

• PhD-Students:
 › Ctirad Sousedik
 › Edlira Martiri
 › Guoqiang Li
 › Kiran Raja
 › Martin Olsen (graduated)
 › Martin Stokkenes
 › Nabeel Al-Bahbooh
 › Patrick Schuch
 › Soumik Mondal (graduated)
 › Marta Gomez (guest)
 › Pankaj Wasnik

• Key-factors::
 › Since 2008, 6 EU FP7 projects,
 › 2 Norwegian funded project
 › 1 US-government funded project
 › 2 research projects with the German BSI
 › 4 industrial projects,
 › cooperated with > 30 research partners
 › approx 140 peer-reviewed publications
Outline

• Introduction to SWAN
• Consortium
• Project idea
• Content of the research
The SWAN Project

SWAN - Secure Access Control over Wide Area Network

- IKTPLUSS program
- October 2015 - September 2019
- Funding of 23.055.000 NOK
- Partners from 4 European countries
The SWAN Consortium

Partners:

- Norwegian Biometrics Laboratory (NBL) @ Gjøvik University College (GUC)
- Department of Informatics @ University of Oslo
- Morpho, France
- Institut de Recherche Idiap, Switzerland
- Association of German Banks, Germany
- Zwipe AS, Oslo

Sponsor: IKTPLUSS
The SWAN Consortium

Partners:
- Norwegian Biometrics Laboratory (NBL) @ Gjøvik University College (GUC) @ Norwegian University of Science and Technology (NTNU)
- Department of Informatics @ University of Oslo
- Morpho, France
- Institut de Recherche Idiap, Switzerland
- Association of German Banks, Germany
- Zwipe AS, Oslo

Sponsor: IKTPLUSS

The Research Council of Norway
Project Idea
Access Control

Authentication can be achieved by:

- **Something you know:**
 - Password, PIN, other secret

- **Something you own:**
 - SmartCard, USB-token, key

- **Something you are:**
 - Body characteristics

Something you know or own you may **loose, forget or forward** to someone else, with biometrics this is more difficult.

- security policy not violated by delegation
- non-repudiation of transactions

„This was initiated by Igor Popov misusing my card“
Access Control in the Banking Environment

A European perspective

Smartphone Access Control

Foreground authentication (user interaction)
- Deliberate decision to capture (willful act)
- Camera-Sensor
 - Fingerprint recognition
 - Apples iPhone 5S / Samsung Galaxy 5
 - Fingerphoto analysis
 - Face recognition
 - Iris and eye recognition
- Touchpad: allows signature recognition

Background authentication (observation of the user)
- Microphone
 - Speaker recognition
- Accelerometer
 - Gait recognition
 - concurrent - unobtrusive

Image Source: Apple 2013
Operators will think:

„The biometric sensors must be robust against fake attacks“
Privacy Protection - Sensitive Data?

Operators will think:

„Biometric systems must be compliant to data privacy and data protection principles“
Privacy Protection - Revocability?

Data subjects *may* think:

„The number of biometric characteristics is *limited* (e.g. we have only 10 fingers) - we can not revoke the biometric *reference*“
Objectives

• To develop and demonstrate biometric solutions that are fast, trustworthy and secure for real-time authentication of individuals at banking transactions.

• To enable privacy-preserving bank transaction authentication protocols over wide area network with a privacy-by-design approach.

• To study vulnerabilities and limitations of the biometric modalities such as a 2D face, fingerprint, eye, and voice.

• To develop transaction authentication protocols using biometrics that can overcome the need for centralized storage of biometric data.
Work Structure

- **WP1: Transversal Activities**
 - WP2: Privacy Preserving Biometrics
 - WP3: Information Fusion
 - WP4: Presentation Attack Detection
 - WP5: Transaction Protocol

- **WP6: Demonstrators**
Conclusion

Biometrics is possible with today's smartphones
• a multi-biometric authentication scheme with scaling factors is a good choice with respect to security threats

Biometric standards are available
• financial transaction schemes should follow privacy standards

SWAN follows the two channel concept
• is based on international ISO/IEC standards
• is privacy friendly as no biometric reference is stored on a banking server

More and detailed information on SWAN at:
http://nislab.no/biometrics_lab/swan
http://www.christoph-busch.de/projects-btap.html
Contact:

Prof. Dr. Christoph Busch
Norwegian University of Science and Technology
Computer Science Department
Teknologiveien 22
2802 Gjøvik, Norway
Email: christoph.busch@ntnu.no
Phone: +47-611-35-194