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Abstract

This report addresses the challenge of demographic variability of biometric
recognition systems, which are based on face image analysis and which are incor-
porating biometric sample quality assessment algorithms. When dealing with
operational systems, the quality of captured face images is relevant as it will
impact the recognition accuracy. Thus, it is required to measure the utility of a
face sample with a quality score but also with complementary measures that can
provide actionable feedback. Acceptability of biometric systems requires fairness
of biometric algorithms and artificial neural networks that are used. It is impor-
tant to determine if face recognition systems are/are not biased towards a specific
demographic group. In order to investigate this challenge SC37 WG3 has started
in July 2024 an Ad Hoc group on demographic variability of face image quality
measures. This is the first report of the groups’ work from July to December 2024.
Disclaimer-01: It is desirable to investigate the demographic variability for sam-
ple quality assessement algorithms for fingerprint images and other. However this
report is limited to face images.
Disclaimer-02: For the sake of providing a self-contained document, we included
textual components from ISO/IEC standards [1–3] that we have developed and
papers or reports [4–6] which we have published recently.
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1 Introduction

Face recognition today is widely adopted and has reached high significance in a variety
of applications, ranging from authentication with smart personal devices (e.g. mobile
phones), over access control (e.g. border crossing) to forensic applications (e.g. video
surveillance), which all constitute relevant operational systems.

For the face capture process it is relevant to fulfill the quality requirements for
enrolment samples and recognition samples: the capture subject should frontally face
the capture device to ensure a frontal pose, neutral facial expression and appropriate
lighting conditions. ISO/IEC 29794-5 [2] describes uses cases, which require quality
assessment:

• UC1: Collection of reference samples for ID documents. The face image will be
stored on a document, used for example for a maximum of 10 years and should
support human examination.

• UC2: System enrolment, current or later creation of a reference, delayed recognition.
Acquisition of face images where quality should be high enough to ensure later usage
and interoperability.

• UC3: Collection of probe samples for instantaneous recognition. Single use face
image with instantaneous response.

Requirements on face image quality, which are relevant to these use cases are
formulated in ISO/IEC 39794-5:2019 [7] for UC1 and in ISO/IEC 19794-5:2011 [8].

Biometric performance is addressing the recognition accuracy in terms of low error
rates for false positive of false negative errors [9]. In order to reach a good recognition
accuracy the quality of biometric samples plays an important role. Only when both
reference and probe samples are of good quality a reliable comparison score can be
achieved.

However a remaining challenge is that biometric algorithms shall treat different
demographic groups in a fair manner, meaning with the same recognition accuracy
and equal chances to fulfill low quality score thresholds. Addressing this challenge is
fundamental to reach wide acceptability of biometrics in society.

To address this challenge, we recommend re-examining each individual quality
measure algorithm for potential bias. Specially crafted test data are required for this
purpose. More precisely, test data has to cover relevant demographic variables includ-
ing gender, age, ethnicity, among others. An innovative approach would be the use of
synthetically generated data, which offer the advantage of analyzing quality-related
defects in an isolated way with homogeneous quality across all demographic groups.
In contrast, the conventional approach of creating composite databases from various
sources is less suitable here - but all that can be done in this version of the report.
Differences in compression, cameras used, or other factors can lead to unintended dis-
tortions. Synthetic data, on the other hand, would enable controlled homogeneity and
increase the reliability of the results.

The WG 3 Ad Hoc group was tasked to investigate the variation of the unified
quality score and of other quality measures of interest for the demographic variables
(e.g. age, gender and skin color). This WG 3 Ad Hoc group aims to collect from
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operators data regarding the distribution of quality measures with respect to the three
use cases defined in ISO/IEC 29794-5.

The output of the Ad Hoc group is this report containing also recommendations
for further actions.

2 Face image quality

For two dimensional (2D) face recognition, capture requirements have been formulated
in the international standard ISO/IEC 39794-5 [7], including for example a decent res-
olution [10], a full frontal perspective, good contrast, and good lighting. Furthermore
certain acquisition criteria such as a neutral facial expression or the precondition that
the face region and specifically the landmarks shall not be covered by hair, and the
absence of (reflective) glasses or headgear should be met. If compliance of a face image
with these requirements is not fulfilled, then the biometric system may recognize the
capture subject only with low probability. Not very often the pose (i.e. perspective)
and the expression of the face is fully identical in the reference and in the presented
probe sample. In essence the drawback of the 2D approach is: the biometric per-
formance is sensitive to pose variations, illumination changes, sensor conditions, and
other disturbance factors that degrade the image quality.

It can be assumed that a biometric comparison algorithm delivers good and reliable
results when high-quality images are presented and, conversely, delivers worse results
when low-quality images are presented. Recently strong innovation is observable for
face image quality assessment. One of the driving factors is the launch of the European
Entry Exit System (EES)[11] which requires that the EU member states will conduct
the biometric enrolment at border control points in accordance with Implementing
Decision 2019/329 [12].

Capturing high-quality biometric samples still remains a difficult task. Examples
of factors that have a negative impact on the quality of a face image can be seen in
Figure 1. To this end, great efforts have been placed into developing quality assessment
algorithms for various biometric characteristics to estimate the quality of a captured
biometric sample and ensure that its quality is sufficient.

An overview of methods to assess face image quality was recently given in [13].
These methods focus on unified quality scoring approaches that describe the utility of
an image for face recognition. The algorithms should have predictive power, meaning
that a low quality score indicates a low comparison score to be expected when that
image is used in a biometric comparison. Such low score should prevent the face image
to be inserted into the EES enrolment database. But also complementary measures are
needed that allow actionable feedback to the capture subject such as the correctness
of the pose or information to the biometric attendant such as the sharpness of the
face image (among many others). Requirements for a face image to be compliant to
a canonical face image definition are expressed in the Biometric Data Interchange
Standard ISO/IEC 19794-5:2011 as Frontal image type [8] and in the more recent
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Fig. 1: Various examples of face image defects (i.e. factors) of a captured sample that
negatively impact the recognition performance. As a result, the images shown are not
compliant with requirements formulated in ISO/IEC 39794-5 [7]. Facial images taken
from [7].

Extensible Biometric Data Interchange Standard ISO/IEC 39794-5 in Annex D.1 [7]1

following the ICAO requirements for reference facial images for MRTDs [14].
The prediction capability of a unified quality score is determined with error versus

discard characteristic curve (EDC)[1] based on the false non match rate (FNMR)[9]
as an expression of recognition performance (i.e. false negative outcomes). To examine
the full impact of discarding low quality samples on performance, false non-match
EDC and false-match EDC should be explored together [1]. The EDC can illustrate
how quickly the FNMR will decrease, when poor quality samples are discarded from
the dataset in a step-wise manner. This is illustrated in the example in Figure 2, where
for a chosen discard fraction the FNMR decreases faster for the MagFace algorithm
[15] (the green line) as compared to alternativealgorithms indicating for MagFace a
better prediction of the biometric recognition performance2. For this analysis it is
important to demonstrate that a unified quality scoring method can generalise over
many recognition algorithms [16, 17].

Soon a standardisation process for a unified quality algorithm and complementary
quality measures (i.e. actionable feedback) is about to be completed with ISO/IEC
29794-5 [2]. The quality score is a holistic measure for the entire sample, which is
predictive of recognition performance and is an integer number in the range 0 to
100 (with higher being better). Along with the standard ISO/IEC 29794-5 the Open
Source Face Image Quality (OFIQ) project [6] does provide an open-source reference
implementation of standardised algorithms, which was released also in 2024. This open
source software can be deployed in commercial and governmental applications3. The
MagFace algorithm [15] was selected for the unified quality scoring, as it showed the

1According to ICAO TAG/TRIP/4 decision from October 2023, passport inspection system must be able
to handle ISO/IEC 39794-5 face image data by 2026-01-01

2The FNMR in Figure 2 is computed in the NIST FATE SIDD evaluation
3For more information on OFIQ visit the BSI website: https://bsi.bund.de/dok/OFIQ-e
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Fig. 2: Reduction in False Non-Match Rate (FNMR) as a function of the fraction of
lowest Unified Quality Score images discarded, for an initial FNMR value of 5 percent.
Mated comparison scores are from comparison of high quality visa-like application pho-
tos with medium quality airport arrival webcam photos. Quality is computed only on
the webcam photos. A steeply declining curve connotes a better QA. FNMR decreases
faster for the OFIQ-UQS (green) algorithm as compared to the alternative algorithms..

best EDC curve in the generalisation over the 15 best performing face recognition
systems in the Face Analysis Technology Evaluation (FATE) Part 11: Face Image
Quality Vector Assessment - Specific Image Defect Detection [17].

For the optimisation of the capture process and the involved individuals, namely
the capture subject and the biometric attendant, actionable feedback should be
provided. Quality components (e.g. the pose angle) are assessing properties of the bio-
metric sample and the compliance with the requirements for a canonical face image
(e.g. frontal perspective to the capture device with zero pose angle). Beyond sub-
ject related measures, capture device related measures are also of interest, primarily
for the capture system set-up and calibration. Here the standard provides algorithms
to assess the sharpness / focus of the camera. Component measures have also been
included in ISO/IEC 29794-5 [2] and its reference implementation Open Source Face
Image Quality (OFIQ) [6]
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3 Biometric fairness overview

The successful deployment of biometric systems requires good acceptability in the
target population, respectively in the society, when it comes to public biometric system
operations. Acceptability in turn requires on the one hand that the interaction of
individuals with capture devices is considered as convenient, meaning a good usability
of the interaction scheme. Acceptability on the other hand also requires that data
subjects have confidence that they are treated in a fair manner by the biometric
algorithm. Fairness is specifically expected for biometric recognition algorithms. The
NISTIR 8280 [18] investigated to which extent the biometric performance4 for face
recognition systems shows a differential performance5, meaning a difference in the
mated and non-mated comparison score distributions. Such investigation is specifically
of interest for categorical demographic variables6, such as the gender categories male,
female or neutral. Another interest is the differential performance related to continuous
demographic variables7, such as the skin color of an individual. While skin color has in
the past been considered as categorical classes (e.g. the Fitzpatrick Skin Tpyes (FST)
[19]) the recent literature considers as alternative the Monk Skin Tone Scale (MST)
constituting a categorical variable that is more appropriate [20, 21] and for which test
data exists [22].

It is important to validate prior to deployment that a face recognition system is
not biased towards a specific demographic group. An overview of the effect of algo-
rithmic bias in biometric systems and a survey on the recent literature is given in
[23]. The reasons for bias are manifold and range from unbalanced training datasets
to systematic effects in the training procedures [24–26].

On the path to reach fair biometric systems, a testing methodology is needed.
Recent proposals for fairness measures [25, 27] have been included as testing method-
ology in the International Standard ISO/IEC 19795-10 [3]. However the challenge
remains open, as testing methodology for quality measures that can ensure a fair sam-
ple quality assessment process are still in their infancy [5]. This report is elaborating
in Section 7 on concepts that have been proposed so far.

4 Demographic variables of interest

The International Standard ISO/IEC 19795-10 [9] has introduced the following
demographic variables that are of interest for this report:

• Gender: is defined as the classification of individuals as male, female or additional
categories based on social, cultural or behavioural qualities. An individual’s gender
identity can consist of multiple, distinct categories. An individual’s gender can also

4Following the International Standard ISO/IEC 19795-1 [9] biometric performance is reported in terms
of false match rate (FMR) and false non-match rate (FNMR) for verification systems and in terms of false
positive identification rate (FPIR) and false negative identification rate (FNIR) for identification systems

5The International Standard ISO/IEC 19795-10 [3] defines differential performances as “difference in
biometric system metrics across different demographic groups”

6The International Standard ISO/IEC 19795-10 [3] defines categorical demographic variable as “demo-
graphic variable of an individual that is nominally or ordinally described”

7The International Standard ISO/IEC 19795-10 [3] defines continuous demographic variable as “demo-
graphic variable of an individual that is observable, measurable, and that is not necessarily constrained to
discrete categories”
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change over time. When gender is included in the evaluation, gender should be
determined through self-reporting. Gender self-reporting options presented to the
capture subject shall be documented. In some evaluations that include gender, it is
not always possible to obtain self-reported information.

• Sex: is defined as the state of being male or female as it relates to biological factors
such as DNA, anatomy and physiology. Sex typically consists of two categories,
“male” and “female”. Female individuals generally possess two copies of the X
chromosome. Male individuals generally possess one copy each of an X and a Y
chromosome. Important exceptions do occur and complicate binary classification.
The tester should establish appropriate categories for sex. If necessary, the tester
can extend the general binary classification model of male/female.

• Ethnicity: in the context of biometric evaluations, ethnicities are classifications of
individuals within a society based on shared qualities that are generally considered
distinct within that society. Categories can reflect common physical characteris-
tics, ancestry, language, community, religious affiliation, cultural heritage or other
common qualities.

• Skin tone8: is the perceptual lightness or darkness value of an individual’s skin.
Skin tone is primarily determined by the amount of melanin in an individual’s skin
cells. Skin tone or the amount of melanin in skins cells, can be impacted by ethnicity
as well as external factors, such as exposure to ultraviolet radiation or levels of
vitamin A in the body.

• Birthplace: refers to the geographic location (e.g. a region or country) where an
individual was born. When birthplace is included in the evaluation, birthplace shall
be established through voluntary self-reporting or from available ID data or docu-
ments. In evaluations that include birthplace, the tester shall prepare a statement
that documents the method for determining birthplace. If utilizing self-reporting to
establish birthplace, the tester shall prepare a statement that documents birthplace
self-reporting options presented to the data subject. If birthplace is recorded more
finely than nation state (e.g. by a region within a country), the tester shall prepare
a statement that documents how this granularity was established (see 7.3). Birth-
place is a distinct demographic variable from ethnicity and shall not be used as a
proxy for ethnicity.

• Age: the age of an individual is the quantity of time that has elapsed since the
moment of the individual’s birth. Age is commonly expressed in months or years.
When age is included in the evaluation, age shall be established through self-
reporting. Age can be subsequently verified via identity documents (e.g. a driver’s
license, passport, birth certificate, etc.).

Additional categories that are contained in ISO/IEC 19795-10 are height, weight,
place of residences and native language. These categories are not considered in this
first phase of the Ad Hoc group work.

The following demographic variable that can influence face image quality compo-
nent values is also of interest for this report. Wearing of eyeglasses: Face images
show individuals who either wear eyeglasses or no eyeglasses on their nose.

8Skin tone is used intentionally as both skin lightness (ISO/IEC 19795-10) and hue may contribute to
face image quality
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5 Quality measures of interest

The discussion of the Ad Hoc group concluded that all quality measures are of interest,
including the Unified Quality Score (UQS) and the 27 Component Quality Measures
(CQM), which are defined in ISO/IEC 29794-5 [2]. Note that not all reports con-
tained in the following sub-sections address all quality measures of interest and/or all
demographic variables of interest due to the lack of data respectively ground truth
data.

6 Demographic variability reports

6.1 DV report based on MST

6.1.1 Experimental Setup

Disclaimer: The report that is presented in Section 6.1 has been published recently
at BIOSIG 2024 [28].

Datasets

Kabbani et al. [28] use four datasets in total for the evaluation: FRLL [29], FRGCv2
[30], LFW [31], and MST-E [22]. All four datasets include images of subjects with
different skin tones, genders, ages, and ethnicities. The FRLL dataset features images
taken in a controlled studio environment, while LFW has images taken in the wild.
FRGC and MST-E have images taken indoors, outdoors, and with different lighting,
poses, and expression conditions. The MST-E Dataset is meant to be a reference
dataset for the Monk Skin Tone Scale (MST) [21] such that human observers can
use it to train on how to label subjects on this scale, thus it includes ground truth
labels about skin tone for each of the subjects [20, 22]. The other datasets do not
have ground-truth skin tone labels. The FRLL dataset has ground-truth labels for
age, gender, and ethnicity. LFW has manually verified gender labels [32].

To overcome the lack of ground truth age, gender, and ethnicity labels for some
datasets, Kabbani et al. [28] use Face Attribute Classification (FAC) [33] to extract
these labels when they are missing. The predicted labels are averaged on all images
of the same subject to obtain more accurate results. However, there is no reliable
automated method for predicting the real skin tone labels, so to make sure Kabbani
et al. [28] obtain credible results for the skin tone analysis, they manually label 902
subjects from two datasets according to the MST’s guidance. As per the Monk Scale
Tone guidance, they use the MST-E dataset as a reference, and label all subjects in
the FRLL dataset and 800 subjects in the LFW dataset910. The subjects in the LFW
dataset are selected based on those that have the largest number of images to make
sure that as many images of the same subject as possible are investigated, before
giving them an MST scale value.

9The MST labels are available at: https://github.com/wkabbani/dv-fiqa
10Extracting labels from unlabelled images to replace missing ground-truth labels for age, gender and

ethnicity appears error-prone. Classification errors and age-estimation errors may occur. Future version of
this report should focus on data with given ground-truth labels
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Dataset #Images #Subjects #Skin Tone Labelled Subjects
MST-E 887 19 19
LFW 12684 5556 800
FRLL 597 102 102
FRGC 18154 227 -

Table 1: Overview of the evaluation datasets. The numbers are for the actual number
of subjects and images used in the evaluation after discarding images where no face is
detected.

FIQA Algorithms

To evaluate the FIQA measures defined in ISO/IEC FDIS 29794-5, Kabbani et al.
[28] use the reference implementation in the Open Source Face Image Quality (OFIQ)
framework11. OFIQ provides implemented algorithms for all quality measures.

6.1.2 Experiments and Results

Skin Tone

Kabbani et al. [28] evaluate the FIQA measures on the MST-E, FRLL, and LFW
datasets where the ground truth skin tone labels are available. As shown in Figure
3, the score distributions of the unified quality score do not show any noticeable
differences between the various skin tone groups. The scores are rather distributed
along the same value ranges on each dataset, with a higher concentration around
the median values. The score distributions for most of the other quality measures
show rather the same behavior where there are not clear differences between the
groups. Kabbani et al. [28] show one such example for the illumination uniformity
measure in Figure 4. However, the distributions of two quality measures show clear
differences in the results for different skin tone groups. Figure 5 shows the distributions
of the dynamic range quality values. It is clear from the results that lighter skin
tones are getting relatively higher quality values. This effect is mildly noticeable in
LFW but clearly visible in FRLL. In MST-E, the distributions are almost split into
two groups, with the lighter skin tone group having relatively higher quality values.
Another quality measure where skin tone is having a very noticeable effect on the
quality values is the luminance mean. Figure 6 shows the distributions of the luminance
mean quality values. The results of the MST-E dataset are clearly split into the same
two groups as for the dynamic range, but with a much larger gap. The two peeks
in the distribution are understandable given that MST-E explicitly features images
under good and bad illumination settings. The effect of skin tone on this measure is
also much more noticeable on FRLL and LFW. On both datasets, the distributions
are clearly becoming more concentrated toward lower quality values as the skin tone
gets darker.

11https://github.com/BSI-OFIQ/OFIQ-Project
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Fig. 3: Unified quality score distributions across the MST 10 skin tone scale.

Fig. 4: Illumination Uniformity quality value distributions across the MST 10 skin
tone scale.

Age

Kabbani et al. [28] evaluate the FIQA measures on all four datasets. They divide the
age label into age groups and retain only the groups that have sufficient representation
in one or more datasets. These are age groups: 20–40, 40–60, and 60–80. The evaluation
results for all measures show no clear differences between the three age groups. Hence,
Kabbani et al. [28] choose to show only the distributions of the unified quality scores
in Figure 7.

Gender

The term gender refers to a classification based on social, cultural, or behavioral factors
as per the international standard ISO/IEC 2382-37 on biometrics vocabulary [34]. In
our study, Kabbani et al. [28] confine gender to two genders only, given that the ground
truth labels and the face attribute classification models report gender in terms of male
and female only. Similar to the results for age, there are no clear differences between
the two genders in any of the evaluated measures. Figure 8 shows the distributions
for the unified quality scores, and as evident from the results, the distributions are
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Fig. 5: Dynamic Range quality value distributions across the MST 10 skin tone scale.

Fig. 6: Luminance Mean quality value distributions across the MST 10 skin tone scale.

very similar, with slightly more concentration of higher quality values for the male
gender on FRLL and LFW, but on the other hand, slightly more concentration of lower
quality values on MST-E. The results on FRGC are rather identical. Figure 9 shows
the quality value distributions for the expression neutrality measure. It is also evident
that the distributions are rather identical across the four datasets. The two peeks are
also understandable, given that the datasets explicitly feature images of neutral and
non-neutral expressions.

6.1.3 Discussion

The findings of the study are rather promising, because unlike what one might expect
given the documented demographic bias in facial biometric systems, most FIQA algo-
rithms, studied over four different datasets, have not demonstrated any substantial
differences in their results across the demographic variables. The only two measures
that have shown variations in their results on the skin tone variable are the luminance
mean and the dynamic range. While it might be expected that these two aspects are
different for individuals with different skin tones, it is worth noting that the FIQA
algorithms are supposed to produce quality values that reflect how good a given image
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Fig. 7: Unified quality score distributions across the 3 age groups. MST-E and FRLL
have no subjects in the age group 60-80.

Fig. 8: Unified quality score distributions across the 2 gender groups.

Fig. 9: Expression Neutrality quality value distributions across the 2 gender groups.

is with regard to the aspect assessed by the algorithm. Hence, it is not acceptable that
these algorithms have variations in their outcomes only due to differences in skin tone.
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6.2 DV report from NIST

6.2.1 NIST FATE SIDD Evaluation

Automated face recognition and age estimation are sensitive to quality problems in
images. Standards set requirements on images; for machine-readable travel documents,
these requirements are found in ISO/IEC 39794-5.

The NIST Specific Image Defect Detection (SIDD) evaluation tests automated
tools used to check photo requirements, which are quantified in ISO/IEC 29794-5.

The images used by NIST for the current work are high-quality, front-facing
immigration application-type images– these images are generally frontal and well-
illuminated; subjects generally have mouths closed and eyes open.

The six measures evaluated are EyesOpen2 (eye openness normalized by chin-to-
eyes distance), MouthOpen2 (mouth openness normalized by chin-to-eyes distance),
Overexposure, Underexposure, Resolution, and Unified Quality Score.

Further information can be found in the NIST FATE Quality SIDD evaluation.

6.2.2 Regions of Birth

For this study, countries of origin were selected to have low levels of transcontinental
migration. The countries were grouped into six regions of birth: East Africa, East
Asia, East Europe, South Asia, Southeast Asia, and West Africa. For this analysis,
the SIDD results are also separated by sex (female and male).

6.2.3 Results

Evaluation of the OFIQ algorithm shows the following (figures 10 and 11):

• slightly low values of Eye Openness (normalized by chin-to-eyes distance) for West
African female subjects and East Asian male subjects

• high values of Mouth Openness (normalized by chin-to-eyes distance) for East
African subjects

• high values of Overexposure for East European and East Asian subjects
• high values of Underexposure for East African and West African subjects
• slightly low values of Resolution for Southeast Asian subjects
• slightly low values for Unified Quality Score for West African subjects of both
sexes and East African female subjects.

The implementation for OFIQ uses secunet 003 for EyesOpen2, MouthOpen2,
Resolution, and Unified Quality Score, and secunet 005 for Overexposure and Under-
exposure.

13



Fig. 10: For application-type photos, violin plots show distribution of values for six
regions of birth and two sexes.
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Fig. 11: For application-type photos, cumulative distribution function plots show
distribution of values for six regions of birth and two sexes.
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6.3 DV report regarding glasses

6.3.1 Experimental setup

Algorithm for measuring the percentage of face occlusion

For measuring the degree of face occlusion, we use the face occlusion prevention quality
component of OFIQ [6], OFIQ uses the face segmentation approach face3d0725 [35],
which is recommended in the emerging standard [2].

Data set

For evaluating the performance of the occlusion measurement method, a subset of
well-lit frontal face images with neutral facial expression randomly selected from the
Multi-PIE face image data set [36] was used, which is publicly available for research
purposes.

This data set was chosen, because it contains face images known to be without
occlusion as required for UC1 and UC2. Transparent eyeglasses are being worn in 25
probe images. In 60 probe images no eyeglasses are worn.

6.3.2 Experimental results

Figure 12 shows box and whisker plots for the distributions of the native OFIQ quality
measure (percentage of face occlusion) and for the distributions of the face occlu-
sion prevention quality component of OFIQ (mapped to the range from 0 to 100) in
the subset of the Multi-PIE data set for face images with transparent eyeglasses and
without any eyeglasses. A box is drawn between the first and third quartiles with a
line in between marking the second quartile (median value); crosses represent mean
values. Whiskers are drawn at the greatest/smallest percentage of occlusion smaller/-
greater than 1,5 times the inter-quartile range (between the first and third quartiles)
above/below the third/first quartile. Scores beyond the whiskers are outliers. Figure 12
shows that the measured percentage of occlusion is considerably higher (in the data
set under consideration up to 15%) when eye glasses are worn. At a 95% confidence
level, two-sample t-tests show that the differences between the mean values in Fig. 12
are statistically significant.

Figure 13 is a box and whisker plot showing the distributions of the OFIQ unified
quality score in the subset of the Multi-PIE data set for face images with transparent
eye glasses and without any eyeglasses. At a 95% confidence level, a two-sample t-
test shows that the difference between the mean score values for face images with
and without eyeglasses are not statistically significant in the data set of high-quality
images under consideration. Note that in data sets of lower-quality images showing,
e.g., reflection artefacts on eyeglasses, there can be a significant difference between the
mean score values for face images with and without eyeglasses.

6.3.3 Discussion

For UC1 concerning passport photographs, ICAO prohibits face occlusions except
in specific exceptional cases [14]. For UC2 concerning system enrolment, occlusions
are not permitted either [8]. When lenses are transparent and eyes are not occluded,
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Fig. 12: Measured percentage of face occlusion and corresponding quality component
of OFIQ for unoccluded face images with and without transparent eyeglasses

Fig. 13: Unified quality score of OFIQ for unoccluded face images with and without
transparent eyeglasses

eye glasses affect neither mated nor non-mated comparison scores of face images (see
Fig. 14 . Hence, both documents [8, 14] allow subjects to wear eye glasses with trans-
parent lenses not occluding the eyes. The face segmentation approach face3d0725
[35], however, counts transparent eye glasses as occlusion even if the frame is neither
extremely thick nor occluding the eyes. This deviates from the requirements [8, 14].

To avoid bias against the demographic group of wearers of glasses, for UC1 and
UC2 the discard threshold for the measured face occlusion should be chosen to be at
least 14,6% (maximum value in above experiment). As this allows other, unwanted face
occlusions to be ignored, it may be even better to retrain the occlusion segmentation
model so that it does not consider transparent eye glasses as occlusions.
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Fig. 14: Mated and non-mated MagFace similarity scores when comparing against
high-quality reference face images from the Multi-PIE data set, for unoccluded face
images with and without transparent eyeglasses. At a 95% confidence level, a two-
sample t-test shows that there is no statistically significant difference between the
mean score values for face images with and without eyeglasses

The presence of glasses can be correlated with age. Therefore, bias against wearers
of glasses can contribute to bias against elderly.

For UC3 concerning probe images for instantaneous recognition, some degree of
occlusion is permissible as long as a given FNMR target is not exceeded. Determining
how much face occlusion is permissible at a chosen FNMR target12 is beyond the scope
of this report.

12For automated border control, best practice is an FRR of at most 5% at an FAR of 0.1% [37]

18



7 Methodology

7.1 Objectives

The questions that a methodology for assessing the demographic variability of face
image quality measures should help to answer include:

• How to decide whether slight differences in metrics for multiple demographic groups
are statistically significant?

• How many biometric samples per demographic group are necessary and how many
are sufficient for detecting demographic variability?

Disclaimer: The methodology that is presented in Section 7.2 has been published
recently at ICPR 2024 [5].

7.2 Fairness metrics for biometric quality assessment

In this section we propose and compare multiple fairness measures for evaluating
quality components across demographic groups.

In most cases, the result of a biometric quality assessment is a unified quality
score [2], [1] (UQS), which is a single scalar value, representing the captured biometric
sample quality. Alternatively, the output of a biometric quality assessment can also
be a vector of quality values (i.e. quality components measures (QCM)), measuring
various quality-related properties [13]. While there already exists numerous FIQA
methods (see e.g. [38], [39], [15], [40]), the OFIQ algorithm is expected to be most
influential, since it is used as a reference implementation for the International Standard
ISO/IEC 29794-5 [2].

To measure demographic performance differences between various demographic
groups, ISO/IEC 19795-10 [3] introduced the term differential performance measure
(DPM), which is equivalent to the term demographic differential listed in the standard
ISO/IEC 2382-37 [34]. In our context, a DPM is defined by a formula or algorithm
that receives as input quality scores of different demographic groups and reflects how
fair the underlying quality assessment algorithm is. Although ISO/IEC 19795-10 [3]
specifies methods and statistical techniques for calculating DPMs, there is no dedicated
standardised approach for assessing fairness of quality components across demographic
groups.

The recent paper by Doersch et al. [5] introduces and compares new statistical
approaches based on quality score distributions, for assessing fairness of quality com-
ponents across demographic groups.13 Proposed measures could be used as potential
candidates for defining a fairness measure in an upcoming standard.

7.2.1 Background and Related Work

To ensure that quality algorithms provide equivalent results across demographic groups
and investigate potential biases, various reports have been proposed in the scientific
literature.

13The source code and data of this work is made available at: https://github.com/dasec/
QA-Fairness-Measures
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In the current NIST FATE SIDD report [17], FIQA algorithms for five quality
measures are evaluated to quantify demographic performance differentials. These per-
formance differentials were investigated across six demographic groups. It was found
that only certain algorithms for the quality measures Eyes Open 2 and Resolution
exhibit demographic bias, while several algorithms for the quality measures Mouth
Open 2, Underexposure and Overexposure exhibit demographic bias. As there is no
standardised DPM for FIQA quality components yet, results shown were only visual-
ized in the form of violin plots. In [41] Babnik et al. investigated demographic biases in
FIQA methods. Although no specific quality components were analysed, it was found
that FIQA methods generally exhibit significant bias and tend to favour white individ-
uals. Terhörst et al. [42] evaluated FIQA algorithms with respect to potential bias in
ethnicity and age. It was found, that for all evaluated FIQA algorithms, demographic
performance differentials were observed.

These reports and studies demonstrate the importance of developing a standardised
method for measuring demographic performance differentials in quality assessments
and underlying algorithms in order to reveal potential biases in quality components.

7.2.2 Differential Performance Measures

Gini Coefficient

The Gini coefficient (GC) is a statistical measure of dispersion of a set of numbers [43].
This index, originally used to calculate income inequality, can be applied to various
scenarios, including biometric measures. One biometric DPM based on the GC can be
found, for example, in the ISO/IEC 19795-10 [3] standard for calculating performance
differences for multiple groups. Since there is not yet a standardised DPM for assessing
the fairness of quality assessment across demographic groups, we decided to use the
GC as the backbone for this approach. Therefore, either the mean or median quality
scores for any quality component Q across each demographic group di are utilized as
inputs to the GC as follows:

GC =

(
n

n− 1

)(∑n
i

∑n
j

∣∣Qdi
−Qdj

∣∣
2n2Q

)
∀di, dj ∈ D (1)

where n represents the number of demographic groups, Qdi
is either the mean or

median quality score of the demographic group di and D is the set of all demographic
groups to be evaluated. However, a disadvantage of using median quality scores over
mean quality scores is that, given slightly different demographic distributions of quality
scores with relatively few outliers, all groups may receive exactly the same median
score, even if there exists a slight bias. In addition, as previously for other DPMs listed
in ISO/IEC 19795-10 [3], we adopt the approach of Howard et al. [25] by multiplying
our result by a factor of n/(n − 1) to account for group self-comparisons (i = j in
equation 1), which can be especially relevant for smaller group numbers (n).

While the GC is used in many scenarios, one notable drawback is that it is rather
insensitive to outliers. Table 2 shows synthetically generated mean and median qual-
ity scores for three demographic groups. These quality scores can be interpreted as
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descriptive results of an arbitrary Quality Assessment Algorithm referring to any qual-
ity component Q. The quality scores for the fictitious quality component Q1 were
generated in such a way that one of the three groups exhibits a slight bias (a devia-
tion of approximately 4 to 5 quality score points on average) compared to the other
two groups, as shown visually in Figure 15. Table 3 shows another set of synthetically
generated mean and median quality scores for the same three demographic groups.
In this second fictitious quality component Q2, a more prominent bias is simulated
(a deviation of approximately 13 to 14 quality score points on average) compared to
the others, which is shown in Figure 16. The Sample Quality Fairness Rate (SQFR),
which follows a “higher is better” semantic outputs a fairness score in the range 0-1
and serves as our DPM.

In this report, the term SQFR for the general concept is annotated with a prefix
depending on the method used. When using mean quality scores as input to the GC
as fairness metric, the Mean-GC-SQFR is calculated as follows:

Mean-GC-SQFR = 1−GC(Qdn) (2)

where Qdn
represents the mean quality scores of a quality component Q for a set

of demographic groups D.
When instead using median quality scores as input to the GC as fairness metric,

the Median-GC-SQFR is calculated as follows:

Median-GC-SQFR = 1−GC(Qdn
) (3)

where Qdn represents the median quality scores of a quality component Q for a set
of demographic groups D.

The SQFR scores for the setups discussed are shown in Table 4. For the two
fictitious scenarios presented, the resulting SQFR scores are surprisingly high. This
should not be the case, especially for the strongly biased quality component Q2 (see
e.g. Table 3 or Figure 16), as a significant deviation should result in a general lower
SQFR score. Even for quality component Q1, where one group slightly deviates from
the others, one would not expect Mean-GC-SQFR or Median-GC-SQFR scores of 0.98
and 0.99, which describe a near maximum fair system. To this end, to obtain a more
reliable SQFR, the GC must be adjusted or alternative solutions developed as it does
not sufficiently capture the underlying bias.

Table 4: SQFR results for quality component Q1 and Q2

SQFR Quality component Q1 Quality component Q2

Mean-GC-SQFR 0.98 0.95
Median-GC-SQFR 0.99 0.95

Cubed Sample Quality Fairness Rate

To address the identified drawbacks of the traditional GC we provide an adapted
approach, called Cubed Sample Quality Fairness Rate (CSQFR), which is designed
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Fig. 15: Fictitious quality component
Q1 (Slightly biased): KDE Plot of the
demographic score distribution

Table 2: Fictitious quality component
Q1 (Slightly biased): Synthetic Mean
and Median Quality Scores of different
demographic groups

Group
A B C

Mean 81.3 85.3 86.1
Median 82 85.5 85

Fig. 16: Fictitious quality component
Q2 (Strongly biased): KDE Plot of the
demographic score distribution

Table 3: Fictitious quality component
Q2 (Strongly biased): Synthetic Mean
and Median Quality Scores of different
demographic groups

Group
A B C

Mean 76.6 89.4 90.2
Median 77 90 90

to achieve lower fairness scores in scenarios with demographic bias. This approach
places greater emphasis on biased scenarios by cubing the result, making cases of lower
fairness more visible. The adapted CSQFR when using mean quality scores as input
to the GC, resulting in the Mean-GC-CSQFR is calculated as follows:

Mean-GC-CSQFR = (1−GC(Qdn))
3 (4)

where Qdn
represents the mean quality scores14 of a quality component Q for a set

of demographic groups D. Different Quality Score scenarios for three demographic
groups are provided in Table 5.

For the scenario One group exhibits strong bias Group A received significantly
lower quality scores on average than the other two groups. The Mean-GC-SQFR score
assesses this scenario a score of 0.73, indicating moderate fairness. However, the Mean-
GC-CSQFR approach more reliably reflects the underlying bias by assigning a value
of 0.38 to this scenario. For the scenario One group exhibits slight bias Group A
received slightly lower quality scores on average than the other two groups. While
the GC approach assesses this scenario with a high Mean-GC-SQFR score of 0.91,

14Due to the potential disadvantages of median scores compared to mean quality scores described, median
values should not be used.
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Table 5: Comparison of Mean-GC-SQFR and Mean-GC-CSQFR scores for different
scenarios

Quality Score Scenarios
Mean QS
Group A

Mean QS
Group B

Mean QS
Group C

Mean-GC
-SQFR

Mean-GC
-CSQFR

One group exhibits strong bias 35 95 89 0.73 0.38
One group exhibits slight bias 67 82 89 0.91 0.75
All groups receive different QS 30 50 95 0.63 0.25
All groups receive similar QS 84 89 87 0.98 0.94

the CSQFR captures the underlying slight bias much better, resulting in a moderate
Mean-GC-CSQFR fairness score of 0.74. Furthermore, for the last two scenarios All
groups received different and All groups received similar QS, the Mean-GC-CSQFR
reflects the average quality scores more precise than the traditional Mean-GC-SQFR.

Low-Weighted-Mean Scores

Another DPM as an alternative to inputting the mean or medium quality scores
into the GC, is our proposed approach of Low-Weighted-Mean (LWM) Scores. This
method performs a linear weighting (from lowest to highest) of quality scores in a
given demographic distribution, resulting in lower quality scores being weighted higher.
Since captured biometric samples associated with lower scores would be rejected by
more potential thresholds and this could disadvantage a group with in general lower
quality scores more easily, this approach attempts to place a greater focus on fairness.
This LWM weighting approach is calculated as follows: For each quality score q, a
weight w is calculated as follows:

w(q) = 1−
(

q −min(Q)

max(Q)−min(Q)

)
(5)

where Q represents the union set of all quality scores across the demographic groups to
be evaluated. This inverted min-max normalization ensures that our proposed method
generalizes to quality scores at arbitrary scale while assigning higher weight to lower
quality scores. For each quality score q the calculated weights (multiple occurrences of
the same quality score) are accumulated and used to calculate a weighted arithmetic
mean of the corresponding quality scores. In the unlikely special case where min(Q) =
max(Q) (i.e. there exists only a single quality score across demographic groups), this
single quality score could then alternatively be used as output.

The adapted SQFR when using the LWM, resulting in the LWM-GC-SQFR is
calculated as follows:

LWM-GC-SQFR = (1−GC(LWM(Qdn
))) (6)

where Qdn
represents the quality scores of a quality component Q for a set of

demographic groups D.
A fictitious scenario for demonstration the approach of LWM is visualised in Figure

17. Even though the quality scores of Group A and Group B have similar mean
and median values (see Table 6), the underlying quality score distributions are very
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different. In this setup, more biometric samples of Group A would be rejected using
lower operational thresholds than for Group B. However, as the LWM approach takes
this behaviour into account, this results in a lower SQFR score15, as demonstrated in
Table 7.

Fig. 17: Fictitious quality component
Q3: KDE Plot of the demographic
score distribution

Table 6: Fictitious quality component
Q3: Synthetic Mean and Median Qual-
ity Scores of different demographic
groups

Group A Group B
Mean 81.95 82.5
Median 81.5 82.5
LWM 75.4 81.4

The LWM approach achieves the lowest SQFR score in this scenario. When using
the CSQFR with the LWM approach, the resulting LWM-GC-CSQFR becomes even
lower, considering the different underlying distributions and placing greater emphasis
on biased scenarios. On the other hand, one should be aware that the quality scores
of Group A shown in Figure 17 represents a rather unrealistic distribution in an oper-
ational environment and thus the advantage of the LWM approach could potentially
be better in theory than in reality.

Table 7: SQFR results for quality com-
ponent Q3

SQFR Quality component Q3

Mean-GC-SQFR 0.997
Median-GC-SQFR 0.994
LWM-GC-SQFR 0.962
LWM-GC-CSQFR 0.889

Mean-Discard-Gap

The last DPM that we propose in this research paper is the Mean-Discard-Gap (MDG).
This approach first calculates the proportion of the biometric samples of a demographic
group that are below a certain number of relevant thresholds. Relevant thresholds are
selected as follows:

Thresholds = {min(QS) + 1,min(QS) + 2, . . . ,max(QS)} (7)

15SQFR Scores in Table 7 have been rounded to 3 decimal places as potential misinterpretations could
occur with this setup
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where QS represents the set of quality scores from all demographic groups to be evalu-
ated. Thus, thresholds are limited to quality scores that exist in the demographic data
set. To avoid a zero-distance discard, the first relevant threshold starts at min(QS)+1.
For all defined relevant threshold, a discard-percentage-gap is computed, which is the
result of the distance between the minimum and maximum of the discard-percentage
values across the groups. The final fairness measure is then derived by taking the mean
discard-percentage-gap value of all min-max distances for all considered thresholds.

The adapted SQFR when using the MDG, resulting in the MDG-SQFR is
calculated as follows:

MDG-SQFR = 1−MDG (8)

A fictitious scenario for illustrating the behaviour of the MDG-SQFR can be seen
in Figure 18.

Fig. 18: Fictitious quality component
Q5: KDE Plot of the demographic
score distribution

Table 8: Fictitious quality component
Q5: Synthetic Mean and Median Qual-
ity Scores of different demographic
groups

Group
A B C

Mean 72.3 83.7 90.4
Median 72 83.5 90

On average, the quality scores of the three demographic groups differ from each
other by 7-8 quality score points, which can be seen in Table 8. The resulting SQFR
Scores with all proposed measures for the fictitious quality component Q5 can be seen
in Table 9.

Table 9: SQFR results for quality com-
ponent Q5

SQFR Quality component Q5

Mean-GC-SQFR 0.93
Median-GC-SQFR 0.93
LWM-GC-SQFR 0.93
LWM-GC-CSQFR 0.81

MDG-SQFR 0.3

Looking at the SQFR scores from Table 9, a clear trend can be seen: The result-
ing fairness score for the MDG-SQFR measure (0.3) is significantly lower than the
previously presented measures (fairness scores of 0.93 and 0.81). This is due to the
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property of MDG that it considers the largest possible fairness difference per thresh-
old and ignores groups in between. For this scenario, therefore, only groups A and C
are considered for the fairness evaluation, when using MDG.

7.2.3 Discussion

Table 10: Comparison of proposed SQFR scores for different scenarios of 5 groups
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One has strong bias 31.4 84.4 84.9 85.2 86.8 0.85 0.61 0.85 0.62 0.13
Two have strong bias 31.1 26.7 85 85.1 87.1 0.72 0.38 0.73 0.38 0.12
One has slight bias 79.1 85.6 85 85.1 86.9 0.98 0.94 0.98 0.94 0.52
Two have slight bias 76 77.5 85.6 86.9 85.8 0.96 0.89 0.97 0.9 0.47
All have similar QSs 85.7 87.5 85.6 86.6 86.5 0.99 0.98 0.99 0.98 0.71
All have equal QSs 87.5 87.5 87.5 87.5 87.5 1 1 1 1 1
All have different QSs 87.5 72.2 25 14.3 47.3 0.61 0.22 0.61 0.22 0.06

In this report, several measures for the fairness assessment of biometric quality
have been presented. A distinction can be made between DPMs that use the Gini
coefficient or variations of it, and measures that treat fairness differently, such as the
MDG-SQFR measure.

In contrast to the GC-based measures, MDG-SQFR only considers the worst
possible fairness difference per threshold (max(discard%) − min(discard%)) across
demographic groups, not considering groups in between. Consequently, the number of
demographic groups to be evaluated does not affect the resulting fairness score. A sig-
nificant deviation of a single group (a disadvantaged group) is sufficient to receive a
relatively low fairness score. This behavior can have an advantage over the GC-based
measures for biased scenarios, as the resulting fairness score is generally lower. At the
same time, however, this can also lead to a fairness score that is too low for scenarios
where the quality score histograms are relatively similar across demographic groups,
which is demonstrated in the scenario All groups receive similar QS in Table 10.

The GC-based measures, on the other hand, are group size sensitive, consequently
returning different fairness scores for different group sizes. However, it should be noted
that the number of groups is usually rather limited (e.g., there are typically 2 groups
for gender comparisons and ethnic and age-specific characteristics are often binned).
Furthermore, the GC-based measures and variations may be less robust, as they use
scalar approximation values such as the mean quality score of a demographic group,
which may not accurately reflect the underlying quality score distribution. For a com-
parison and overview of different scenarios of all the measures presented in this paper,
see Table 10.
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In general, if there is a preference of achieving even lower fairness scores for biased
scenarios while slightly reducing the score of fairer scenarios, we recommend using
a variation of the CSQFR over a variation of the SQFR. A promising CSQFR vari-
ant could be the LWM-GC-CSQFR, as it behaves similarly to the Mean-GC-CSQFR
and additionally has the property of giving higher weight to lower quality scores. On
the other hand, this weighting of the LWM-GC-CSQFR may not be necessary for
quality score distributions in the field, as these are unlikely to include edge cases as
demonstrated in Figure 17 and therefore the simpler Mean-GC-CSQFR may already
be sufficient for quality score distributions in the field.

7.3 Addendum regarding the Mean-Discard-Gap

Section 7.2.2 introduced the “Mean-Discard-Gap (MDG)” computation in the con-
text of integer quality scores, which should be applicable e.g. to OFIQ (introduced
in section 2). The MDG concept does however generalise to arbitrary floating-point
quality score distributions, if that is required: Taking figure 19 for example, the MDG
value for the range of relevant quality score thresholds can be generally computed as
the area between the minimum and maximum discard percentage curves, divided by
the relevant threshold span.

The “range of relevant quality score thresholds” can be the range between the
lowest and highest functionally distinct thresholds, or the range of possible algorithm
output values (such as [0, 100] for OFIQ), or some other range (e.g. by explicitly
excluding higher thresholds above a limit that is no longer deemed to be operationally
relevant). In the example’s case the MDG value is 41.31% for the [0, 100] range.

Additionally, note that this concept could easily be modified to e.g. use the mean
of the distances of each group’s discard percentage to the best group discard percent-
age per threshold, instead of intentionally focusing only on the distance between the
worst group value (maximum curve) and the best group value (minimum curve) per
threshold.
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Fig. 19: A synthetic Mean-Discard-Gap (MDG) example with three groups. The
first plot shows the quality score distribution density, while the second plot shows
the corresponding discard percentages across the functionally relevant quality score
threshold range. The “Min”/“Max” curves are the curves for the minimum/maximum
discard percentage values across all group curves. Note that the discard percentage
curves should typically use stepwise interpolation to reflect that a set of samples is
discarded per threshold (as no fractions of samples can be discarded).

7.4 Incorrect Sample Discard Rate

ISO/IEC 29794-1 [1] defines the incorrect sample discard rate as the proportion of bio-
metric samples incorrectly discarded when they would reach correct match decisions
by a comparison subsystem. The incorrect sample accept rate is defined as the pro-
portion of biometric samples incorrectly retained when they ultimately result in false
non-matches by the comparison subsystem [1]. Both error rates should be reported
together because both depend on the same quality score threshold used for discard-
ing/retaining. To assess the impact of demographic variability when face image quality
scores are used to make decisions on whether to discard or to retain images for fur-
ther processing, for each demographic group the incorrect sample discard rate and the
incorrect sample accept rate can be reported as functions of the quality score threshold

8 Conclusion and recommendations

This report article has looked at demographic variability of face image quality assess-
ment methods in face recognition systems. The validation of algorithm fairness is
fundamental. It remains important to demonstrate that face quality measures are not
biased towards a specific demographic group.

The Ad Hoc group proposes to WG3 the following steps, which should be initiated
in the January 2025 meeting:

• Transform Sections 1 and 2 to 6 of this Ad Hoc group report into an ISO/IEC TR.
Via plenary resolution the DE NB is invited to submit as soon as possible a new
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work item proposal “Technical Report on Demographic Variability of Face Image
Quality Measures”.

• Transform Sections 1, 2, 4 and 7 of this Ad Hoc group report into an ISO/IEC
IS. Via plenary resolution the DE NB is invited to submit as soon as possible
a new work item proposal “Fairness Metrics for Biometric Quality Assessment”.
Alternative titles to be considered are: “Fairness Evaluation for Biometric Qual-
ity Assessment” or “Evaluation of Demographic Differential of Biometric Quality
Assessment Algorithms”.

9 Acknowledgements

Authors include members of the WG3 Ad Hoc Group on Demographic Variability of
Face Image Quality Measures. Thanks to all members of the Ad Hoc group for the
intensive discussion we had in the virtual meetings. The views expressed in this paper
reflect the work of the group and integrated in parts work of individual members,
that was produced prior to the groups existence. They do not necessarily reflect the
opinions or endorsements of all contributing authors.

10 Glossary terms

• biometric characteristic: biological and behavioural characteristic of an individual
from which distinguishing, repeatable biometric features can be extracted for the
purpose of biometric recognition

• biometric feature: number or label extracted from biometric samples and used for
comparison

• biometric capture: obtaining and recording of, in a retrievable form, signal(s) of
biometric characteristic(s) directly from individual(s), or from representation(s) of
biometric characteristic(s)

• biometric capture device: device that collects a signal from a biometric characteristic
and converts it to a captured biometric sample

• biometric capture process: series of actions undertaken to effect a biometric capture

• biometric capture subject: individual who is the subject of a biometric capture
process

• biometric attendant: agent of the biometric system operator who directly interacts
with the biometric capture subject

• bona fide presentation: biometric presentation without the goal of interfering with
the operation of the biometric system

• comparison: estimation, calculation or measurement of similarity or dissimilarity
between a biometric probe(s) and a biometric reference(s)

• comparison score: numerical value (or set of values) resulting from a comparison
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• biometric recognition: automated recognition of individuals based on their biological
and behavioural characteristics

• biometric sample: analogue or digital representation of biometric characteristics
prior to biometric feature extraction

• biometric reference: one or more stored biometric samples, biometric templates or
biometric models attributed to a biometric data subject and used as the object of
biometric comparison

• biometric probe: biometric sample or biometric feature set input to an algorithm
for comparison to a biometric reference(s)

• biometric utility: degree to which a biometric sample supports biometric recognition
performance

• quality component: measurement on the biometric sample that may contribute to
the computation of a unified quality score

• quality measure: quality score or quality component

• quality score: quantitative value of the fitness of a biometric sample to accomplish
or fulfil the comparison decision

• EDC - Error-versus-Discard-Characteristic: method to evaluate the efficacy of qual-
ity assessment algorithms by quantifying how efficiently discarding samples with
low quality scores results in improved (i.e., reduced) error. which can for example
be the false non-match rate

• canonical face image: face image conformant to an external standard or specification
of a reference face image

• FNMR - false non-match rate: proportion of the completed biometric mated
comparison trials that result in a false non-match

• FMR - false match rate: proportion of the completed biometric non-mated compar-
ison trials that result in a false match
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34

https://arxiv.org/abs/2404.12203
https://doi.org/10.23919/EUSIPCO55093.2022.9909867

	Introduction
	Face image quality
	Biometric fairness overview
	Demographic variables of interest
	Quality measures of interest
	Demographic variability reports
	DV report based on MST
	Experimental Setup
	Datasets
	FIQA Algorithms

	Experiments and Results
	Skin Tone
	Age
	Gender

	Discussion

	DV report from NIST
	NIST FATE SIDD Evaluation
	Regions of Birth
	Results

	DV report regarding glasses
	Experimental setup
	Algorithm for measuring the percentage of face occlusion
	Data set

	Experimental results
	Discussion


	Methodology
	Objectives
	Fairness metrics for biometric quality assessment
	Background and Related Work
	Differential Performance Measures
	Gini Coefficient
	Cubed Sample Quality Fairness Rate
	Low-Weighted-Mean Scores
	Mean-Discard-Gap

	Discussion

	Addendum regarding the Mean-Discard-Gap
	Incorrect Sample Discard Rate

	Conclusion and recommendations
	Acknowledgements
	Glossary terms

