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Abstract—The wide deployment of biometric recognition sys-
tems has raised several concerns regarding their security. Among
other threats, morphing attacks consist of the infiltration of
artificial images created using biometric information of two
or more subjects. These morphed images are hence positively
matched to several subjects. Recent studies have shown that such
images pose a concrete threat to civil security: wanted criminal
offenders can use an authentic passport to enter a country
with a false identity. However, there is still no quantitative
manner to analyse this threat. We address this shortcoming by
proposing a new framework for the evaluation of the vulnerability
of biometric systems to morphing attacks. The experimental
analysis on real systems based on face, iris and fingerprint
shows that even systems providing high verification accuracy are
vulnerable to this kind of attacks, depending on the verification
threshold and the shape of the mated and non-mated score
distributions.

I. INTRODUCTION

Image morphing has been an active area of research since
the 80s [1], [2]. For instance, in the film industry a mesh
warping technique designed at Industrial Light & Magic [3]
appeared in 1988 on Willow and in 1989 on Indiana Jones and
the Last Crusade. Similarly, in the music industry, morphing
techniques were used as early as 1989 in the cover for Queen’s
album The Miracle, and two years later in Michael Jackson’s
music video Black or White. Similarly, a wide deployment
of biometric recognition systems has been carried out in the
last decade, both for large-scale national and international
initiatives (e.g., the Indian Unique ID1 or the SmartBorders
package2), and for specific applications such as automatic
border crossing3 or banking4. In spite of those facts, it has
not been until very recently that the impact on the security
of such systems caused by photo alterations, and morphing in
particular, has been analysed [4], [5], [6], [7], [8].

Regarding the wider field of research of attacks on biometric
systems, within the ISO/IEC IS 30107 on biometric presen-
tation attack detection [9], Presentation Attacks are defined
as the “presentation to the biometric data capture subsystem
with the goal of interfering with the operation of the biometric
system”. Among other possibilities, an eventual attacker may

1https://uidai.gov.in/
2http://ec.europa.eu/dgs/home-affairs/what-we-do/policies/borders-and-

visas/smart-borders/index en.htm
3http://www.easypass.de/EasyPass/EN/What is EasyPASS/home node.

html
4http://www.cnet.com/news/mastercard-app-will-let-you-pay-for-things-

with-a-selfie/
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Fig. 1: General diagram of a morphing attack: at enrolment, the
attacker and accomplice samples, Mat and Mac, are morphed
into a single sample Mmorph , whose corresponding template
Tmorph is enroled in the database. During verification, when
either probe sample M′at and M′ac is presented to the system,
their corresponding templates achieve similarity scores with
respect to the morphed template, sac = SS (T′ac ,Tmorph)
(resp. at), higher than the verification threshold δ.

aim at manipulating the sample presented at enrolment, for
instance using a morphed sample which allows the positive
verification of two different individuals. Such attacks will be
referred to as morphing attacks for the remainder of the article.
Fig. 1 shows the diagram of such an attack, which is carried
out in the following three steps:
• The attacker finds an accomplice, whose biometric char-

acteristic (Mac) is similar enough to his own (Mat ) to
allow a successful morphing and eventual verification of
both subjects.

• A morphed sample Mmorph is created from the original
unaltered samples of the accomplice and the attacker,
Mac and Mat .

• The morphed sample Mmorph is presented to the system,
and its corresponding template Tmorph is enroled in the
database.

Later on, both the attacker and the accomplice can present
their unaltered biometric characteristics to the biometric sys-
tem, the samples M′at and M′ac are captured, which will



yield the corresponding templates T′at and T′ac. The attack
will be successful if both templates obtain similarity scores
with respect to the enroled morphed template higher than the
verification threshold, δ:

sat = SS (T′at,Tmorph) > δ (1)
sac = SS (T′ac,Tmorph) > δ (2)

where SS outputs the similarity score between two templates.
Within the recently finished FIDELITY EU project [10],

some threats to the concept of secure biometric passports
stemming from these attacks have been unveiled. In 2014 it
was shown in [5] that morphing attacks on face verification
systems are possible due to the similarity of the morphed
image to both subjects, as depicted in Fig. 1. Furthermore, it
is shown in that work that not only automatic face recognition
algorithms, but also human supervisors, can be fooled by
morphed facial images. As a consequence, the work developed
in [5] results in a concrete threat to civil security: wanted
criminal offenders, for example terrorists, can use an authentic
passport, complying with all physical safety features, to enter a
country with the identity of an accomplice, when performing
three basic steps: i) find a rather lookalike accomplice, ii)
morph passport photos of both, possibly utilizing free software
available on the internet, such as the GNU Image Manipulation
Program (GIMP) and the GIMP Animation Package (GAP)
tools used in [5], [7], and iii) the accomplice applies for a
passport. The passport manufacturer will issue an authentic
passport, which can be used to enter a country by both
subjects, the accomplice and the criminal offender. We may
hence conclude that morphed images pose a real and signif-
icant threat to biometric recognition systems, especially for
Automated Border Control (ABC) systems.

More recently, in 2016, a detection algorithm for morphed
face images based on Binarized Statistical Image Features
(BSIF) and Support Vector Machines (SVM) was presented in
[7], which is able to achieve an Average Classification Error
Rate (ACER) as low as 1.73%.

Even if the aforementioned articles only consider digital
morphed images, during the normal procedure for passport
issuance, the digital image is printed, presented at the issuance
office and scanned. In order to conduct a more realistic analy-
sis, and based on a extended version of the database generated
in [7], the vulnerability of both a commercial and a freely
available systems to printed and scanned morphed images
is analysed in [8]. It is shown that Bona Fide Presentation
Classification Error Rate (BPCER) of the scanned images at a
fixed Attack Presentation Classification Error Rate (APCER) is
increased three to five times with respect to that of the digital
samples. As a consequence, more research needs still to be
carried out in this direction in order to detect morphed samples
not only for face but also for other biometric characteristics.

In fact, probably due to the fact that the face has been se-
lected by the International Civil Aviation Organization (ICAO)
as the primary identifier for electronic Machine Readable
Travel Documents (eMRTD), so far the impact of morphed

samples on biometric systems has been studied only for
that characteristic [5], [7]. Therefore, the following questions
remain unanswered:
• What about other characteristics, such as fingerprint, also

considered in ABC systems [11]? Is it possible to launch
similar attacks?

• For a given system, what is the impact of morphing
attacks for different operating points (i.e., verification
thresholds, δ)?

• How similar should Mat and Mac be, in order to allow
a successful attack?

• What is the relationship between the shape of the
mated and non-mated score distributions and the success
chances of a morphing attack?

• What is the appropriate value of δ in terms of robustness
to morphing attacks and low False Non-Match Rate
(FNMR)?

In the present article we aim at answering these questions.
To that end, we propose a general framework to assess the
feasibility of creating morphed samples and to estimate the
success chances of morphing attacks (Fig. 1). This evaluation
framework only requires the computations of the mated and
non-mated scores of unaltered biometric samples, which is
always necessary to fix the verification threshold of the system.
In addition, we evaluate three real independent systems, based
on different characteristics (i.e., face, iris and fingerprint),
to show the generality of the proposed framework and to
analyse the impact of morphing attacks on different biometric
modalities.

The rest of the paper is organised as follows. Sect. II
describes the framework for evaluating the vulnerability of
biometric systems to morphing attacks. Then, real empirical
examples are given in Sect. III for face, iris and fingerprint,
and final conclusions are drawn in Sect. IV.

II. FRAMEWORK FOR MEASURING THE FEASIBILITY OF
MORPHING ATTACKS

In order to assess the feasibility of carrying out morphing
attacks such as the ones described in Sect. I and Fig. 1, we
have to answer the following question: what is the probability,
denoted as Pmorph , that the attacker is successful in his
attempt? Or in other words, what is the probability of sat > δ?
We thus want to compute

Pmorph = p (sat > δ) (3)

To answer this question and extend formality to the problem
being addressed, some notations are introduced in this section.
Throughout the article we will use the Harmonized Biometric
Vocabulary (HBV) defined in the ISO/IEC 2382-37 [12]. For
any clarification on the concepts used, we refer the reader
to the mentioned standard. Given that they are often used
throughout the article, for the sake of clarity, we will only
include here the next definitions:
• Biometric characteristic: “biological and behavioural

characteristic of an individual from which distinguishing,
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Fig. 2: Examples of Mated samples (solid green) and Non-mated samples (dashed red) distibutions for (a) vulnerable and (b)
non-vulnerable systems. The probability of success of a morphing attack for the depicted distributions is given by Pmorph ,
which corresponds to the shaded area below p (s|Hnm).

repeatable biometric features can be extracted for the pur-
pose of biometric recognition”. For example, a fingerprint
or an iris are two different biometric characteristics.

• Biometric instance: for some characteristics, an individual
possesses several instances. For example, the right index
fingerprint is a different instance from the left thumb,
even if they serve to identify the same person.

• Mated samples: “paired biometric probe and biometric
reference that are from the same biometric characteristic
of the same biometric data subject”. For example, two
fingerprint samples from the same right index finger.

• Non-mated samples: “paired biometric probe and bio-
metric reference that are not from the same biometric
instance”. For example, two fingerprint samples from
different fingers.

In general, depending on the samples compared, two differ-
ent types of similarity scores are possible within a biometric
system: those obtained from the comparison of mated samples,
and those yielded by comparisons of non-mated samples.
Let us accordingly define the corresponding types of score
distributions, where s = SS (T1,T2) is the similarity score
between two templates, as illustrated in Fig. 1:
• Mated samples distribution: scores computed

from templates extracted from different samples
of a single instance of the same subject. It
represents the conditional probability of obtaining
a score s knowing that two templates come
from mated instances, that is, p (s|Hm), where
Hm = {both templates stem from mated samples}.

• Non-mated samples distribution: scores yielded by tem-
plates generated from samples of different instances.
It represents the conditional probability of obtaining a
score s knowing that two templates come from non-
mated instances, that is, p (s|Hnm), where Hnm =
{both templates stem from non-mated samples}.

Two examples of the probability density functions of such
distributions are shown in Fig. 2, where the Non-mated
samples distribution, p (s|Hnm), is depicted in dashed red,
and the Mated samples distribution, p (s|Hm), in solid green,

their corresponding mean values are denoted as µm and µnm,
respectively, and the verification threshold δ is represented
with a vertical black dashed line.

In the remainder of the section, we assume that sat ≈ sac
(as defined in Eqs. 1 and 2), and refer to any of the scores as
sat, which hence denotes the scores obtained from the com-
parisons of the attacker or the accomplice unaltered samples
with the morphed template. It should be thus noted that Pmorph

evaluates the average success chances of the morphing attack,
since we have assumed that sac ≈ sat. In practice, one of
the scores can be higher than the other one (i.e., sat 6= sac),
thereby increasing or decreasing the success chances for the
attacker.

Now, back to the formal definition of the morphing attack,
it should be noted that we are interested on where sat lies with
respect to the verification threshold δ. Since it stems from the
comparison of samples belonging to non-mated instances (i.e.,
the attacker or the accomplice, and the morphed sample, which
represents a third instance), it will belong to the Non-mated
samples distribution. However, it is more probable that sat
lies on the right tail of the Non-mated samples distribution,
between the mean values of both score distributions, µm and
µnm. The reason behind this fact is that the reference template
Tmorph is extracted from Mmorph , which is ultimately a
combination of Mat and Mac that was created to allow
a positive verification of both subjects (see Eqs. 1 and 2).
Therefore, Tmorph lies between both unaltered samples in the
n-dimensional space of the biometric templates, and, due to
the assumption of sat ≈ sac, it is expected to lie on the average
of the Mated and Non-mated scores.

More specifically, for a given accomplice whose character-
istic yields a non-mated similarity score snm with respect to
the attacker:

snm = SS (T′ac,T
′
at) (4)

the expected value of sat , denoted µat , can be estimated as:

µat = E (sat) = E

(
snm + sm

2

)
=
snm + µm

2
(5)



where sm = SS
(
T′morph ,Tmorph

)
represents a mated score,

and hence has an expected value of µm.
In order for the morphing attack to be successful, µat must

lie above the verification threshold δ; otherwise, the identity
claim would be rejected and the attacker would have failed
in his goal of being recognized with the enrolled morphed
template Tmorph . Therefore, the probability of success of the
morphing attack, as defined in Eq. 3, ultimately depends on the
chances of obtaining an accomplice for which µat lies above
the verification threshold δ. Which in turn depends on the
score yielded by the accomplice with respect to the attacker,
snm:

Pmorph = P (µat > δ) = P

(
snm + µm

2
> δ

)
= P (snm > 2δ − µm)

(6)

Denoting
δmorph = 2δ − µm (7)

we can finally compute Pmorph as follows:

Pmorph =

∫
s≥δmorph

p (s|Hnm) ds (8)

In Fig. 2, δmorph is depicted with a purple vertical dashed
line, and the area for which snm > δmorph , thereby granting
success in the morphing attack, is shaded in red. This area
represents the success probability Pmorph .

We may observe in Fig. 2 two different scenarios. On the
one hand, on Fig. 2a, for the defined threshold δ, we can
see that the system is vulnerable to a morphing attack, being
Pmorph = 30.6%. This means that, among all the possible
accomplices used to compute the non-mated scores, 30.6%
of them will yield morphed samples that allow a positive
verification of both the attacker and the accomplice. The
attacker would be consequently allowed to succeed in his goal.

On the other hand, on Fig. 2b, the verification threshold δ
lies closer to the mean mated score, µm, and further from the
Non-mated samples distribution. Since δmorph only depends
on the distance between the verification threshold δ and µm
(see Eq. 7), and this distance is small compared to the distance
between the Mated and Non-mated samples distributions, in
this case δmorph lies to the right of the Non-mated samples
distribution. As a consequence, none of the non-mated scores
snm is high enough to allow the attacker to succeed, thereby
leading to Pmorph = 0%. In other words, the system is not
vulnerable to morphing attacks under the selected verification
threshold δ.

III. EXPERIMENTAL EVALUATION

To show the generality of the proposed framework, three
real systems (i.e., contrary to the simulated distributions plot-
ted in Fig. 2) based on different biometric characteristics, using
different features and comparators, will be analysed with the
framework proposed in Sect. II:
• Face verification: the Log-Gabor Binary Pattern His-

tograms Sequences algorithm proposed in [13] is used.

In particular, experiments are run on a publicly available
implementation within the FaceRecLib5 [14] and the
Bob Toolbox. Similarity scores are computed based on
histograms intersections. Experiments are carried out on
the face subcorpus included in the Desktop Dataset of the
Multimodal BioSecure Database6 [15], which comprises
840 frontal face images from 210 subjects.

• Iris verification: we use the implementation of the
dyadic wavelet based algorithm proposed by Ma et al.
[16] within the publicly available University of Salzburg
Iris Toolkit v1.07 [17]. Similarity scores are computed
in terms of the Hamming Distance. Experiments are
carried out on the IITD Iris Database version 1.08, which
comprises 1,120 NIR images from 224 different subjects.

• Fingerprint verification: we have selected the Finger-
Code scheme presented in [18], in which the final tem-
plate comprises the standard deviations of the grey values
of each sector for a set of Gabor based filters. From the
original 640 features, a subset of the best performing
100 has been selected with the method proposed in
[19], and similarity scores are computed in terms of
the Euclidean distance. Experiments are carried out on
fingerprint subcorpus of the BiosecurID database [20],
considering only the right index acquired with the optical
sensor (6,400 samples from 400 instances).

The corresponding Mated (solid green) and Non-mated
samples distribution for each system, as well as Pmorph (see
Eq. 8), are depicted in Fig. 3. On the top row, the verification
threshold δ corresponding to a False Match Rate (FMR) of
0.1% (as recommended by Frontex [11]) is analysed, whereas
in the centre other operating points are studied. In both cases,
δ is depicted with a black dashed line and the morphing
threshold δmorph (see Eq. 7) is plotted in purple. In addition,
Pmorph is plotted against the FNMR in log scale in the bottom
row. The numerical analysis of the distributions is included in
Table I, together with the success probability of the morphing
attack Pmorph , the difference |δ−µnm| and all the intermediate
values required for the computations.

We may observe in Fig. 3 that there is not a direct rela-
tionship between Pmorph and the accuracy of the biometric
system. In other words, a higher accuracy does not imply
more robustness, nor vice versa. In the systems analysed, for
the operating points corresponding to FMR = 0.1%, the most
accurate system is the iris based (FNMR = 0.58%, see Table I),
then the fingerprint system (FNMR = 7.8%) and the least accu-
rate the face based (FNMR = 19.8%). However, the morphing
attack has the highest probability of success for the iris system
(Pmorph = 99.97%) and the lowest for the fingerprint system
(Pmorph = 2.83%), reaching an intermediate value for the face
based system (Pmorph = 44.56%).

On the other hand, for a given system, the higher the FMR,
the more vulnerable the system is to morphing attacks. This

5https://pypi.python.org/pypi/facereclib
6http://biosecure.it-sudparis.eu/AB/
7http://www.wavelab.at/sources/
8http://www4.comp.polyu.edu.hk/∼csajaykr/IITD/Database Iris.htm
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Fig. 3: Mated samples (solid green) and Non-mated samples (dashed red) distributions for the real systems based on face (left),
iris (centre) and fingerprint (right), for different operation points at FMR = 0.1% (top) and other selected points (center). In
all cases, the verification threshold δ is depicted with a black dashed line, the morphing threshold δmorph is plotted in purple
and the value of Pmorph , which corresponds to the shaded area below p (s|Hnm), is also included. In the bottom row Pmorph

vs FNMR is depicted in log scale.

can be observed for the three systems analysed, which show
higher values of Pmorph for the operating point with the
highest FMR (Figs. 3d, 3b and 3c). This is due to the fact
that, for higher FMRs, δ is lower. As a consequence, it is
more probable that that snm > δ, and hence the attacker will
easily find an appropriate accomplice.

Regarding the shape of the distributions, if there is a big
overlap between the Mated and Non-mated distributions (e.g.,
the face system analysed), low values for Pmorph are achieved
at the cost of high FNMRs: as it may be observed in Fig. 3g,
Pmorph < 1% leads to FNMR > 30%, whereas for iris it
leads to FNMR > 5% and for fingerprint to FNMR > 10%.
An appropriate value of δ should then be chosen in order to
minimise Pmorph and at the same time achieve a low FNMR,
which will enhance the usability of the system.

Furthermore, systems are more robust to morphing attacks
when there is a big difference between δ and µnm: |δ−µnm|.

The reason behind this fact is that, for a large difference |δ−
µnm|, δmorph will still lie far from µnm, hence leading to a
small number of appropriate accomplices to succeed in the
attack. On the other hand, if |δ − µnm| is small, most of the
Non-mated scores will be higher than δmorph , thereby granting
success to the attacker.

In addition, the shape of the Non-mated scores distribution
also plays an important role: for a small σnm, and hence a
very sharp distribution (e.g., iris system), small changes in δ
and δmorph will lead to big changes in Pmorph , as it may be
observed in Fig. 3h for FNMR ∈ [5%, 20%]. This is due to
the fact that most of the Non-mated scores have very similar
values, and therefore a small change in δ will lead to either
none or most of them being higher than δmorph . On the other
hand, for a big σnm (e.g., fingerprint system), the decrease of
Pmorph is more gradual (see Fig. 3i).



TABLE I: Numerical evaluation of the distributions depicted in Fig. 3, including the corresponding mean (µ) and standard
deviation (σ), the operating point analysed in terms of FMR and FNMR, the corresponding verification δ and morphing δmorph

(see Eq. 7) thresholds, as well as the probability of success of a morphing attack Pmorph (see Eq. 8).

µm σm µnm σnm FMR FNMR δ |δ − µnm| δmorph Pmorph

Face 0.43 0.14 0.17 0.04 1.0% 11.1% 0.25 0.08 0.07 99.73%
0.1% 19.8% 0.30 0.13 0.17 44.56%

Iris 0.80 0.07 0.52 0.007 0.1% 0.58% 0.55 0.02 0.54 99.97%
0.01% 5.33% 0.67 0.15 0.30 0.78%

Fingerprint 0.73 0.06 0.32 0.14 0.1% 7.8% 0.64 0.29 0.61 2.83%
0.01% 14.87% 0.67 0.34 0.55 0.49%

Related to the aforementioned facts, even if a verification
system is not robust to morphing attacks for a given operating
point (e.g., FMR = 0.1% for the iris system analysed), such
robustness can be achieved for lower FMRs (e.g., FMR =
0.01%). In that case, δ is far enough from µnm with respect to
σnm (|δ− µnm| = 0.15 and σnm = 0.007 for the iris system,
see Table I), and hence δmorph lies to the right and far from
µnm (see Fig. 3e). Consequently, almost none of the samples
are close enough to the attacker to allow a positive verification
with respect to the morphed template, and the probability of
success of the morphing attack drops (Pmorph = 0.78%).

IV. CONCLUSIONS

We have proposed a new framework to evaluate the vul-
nerability of biometric systems to the so-called morphing
attacks, regardless of the biometric characteristic on which
they rely for recognition. In order to give an estimation of
the success chances of the attack, and accordingly choose an
appropriate value for δ, only mated and non-mated scores for
the corresponding biometric system need to be computed.

The experimental evaluation carried out on three different
real systems, based on face, iris and fingerprint, confirms
the fact that not only face based systems are vulnerable
to morphing attacks. In fact, even very accurate systems
(e.g., iris based) can be fooled with morphed samples if the
appropriate verification threshold is not chosen (e.g., for iris
Pmorph > 99% for FMR = 0.1%, whereas Pmorph < 1% for
FMR = 0.01%). In particular, we can conclude that two facts
play an important role in the evaluation of attacks carried out
with morphed images. On the one hand, the decision threshold,
δ: assuming the system outputs similarity scores, the lower it
is, the higher the success chances of the attacker. On the other
hand, the difference between δ and the mean of the Non-mated
samples distribution, |δ−µnm|: the smaller the difference, the
most likely it is that the attacker will succeed (i.e., higher
Pmorph ).

As a consequence, we need to analyse the score distribu-
tions, and their relationship with the verification threshold δ, in
order to give an estimation of the vulnerability of a particular
system to this kind of attacks and hence choose an appropriate
operating point.
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