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Abstract—Fair operational systems are crucial in gaining and
maintaining society’s trust in face recognition systems (FRS). FRS
start with capturing an image and assessing its quality before
using it further for enrollment or verification. Fair Face Image
Quality Assessment (FIQA) schemes therefore become equally
important in the context of fair FRS. This work examines the
sclera as a quality assessment region for obtaining a fair FIQA.
The sclera region is agnostic to demographic variations and skin
colour for assessing the quality of a face image. We analyze
three skin tone related ISO/IEC face image quality assessment
measures and assess the sclera region as an alternative area for
assessing FIQ. Our analysis of the face dataset of individuals from
different demographic groups representing different skin tones
indicates sclera as an alternative to measure dynamic range, over-
and under-exposure of face using sclera region alone. The sclera
region being agnostic to skin tone, i.e., demographic factors,
provides equal utility as a fair FIQA as shown by our Error-
vs-Discard Characteristic (EDC) curve analysis.

Index Terms—FIQA, Face Recognition, Fair Facial Biometrics,
Eye Sclera, Skin-tone, Exposure, Dynamic Range

I. INTRODUCTION

The quality of face images presented to a face recognition
system (FRS) heavily influences its performance [31]. Thus,
it is important to control face image quality before enrolment
of reference samples and before the verification attempt. Face
Image Quality Assessment (FIQA) is a process that measures
the quality of a face image in terms of its utility for face
recognition. The NIST FRVT report [9] states - "With good
quality portrait photos, the most accurate algorithms will find
matching entries, when present, in galleries containing 12
million individuals, with rank one miss rates of approaching
0.1%”. A face image quality score can be an overall unified
quality score that does not necessarily depend on specific fea-
tures of the image explicitly or individual quality components
that assess a particular aspect of the face image independently
from others.

(a) Subject 1
Fig. 1: Images from FRLL dataset [7]

(b) Subject 2
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A good FIQA is expected to be robust against multiple vari-
ations in the images they process including the consideration
to demographic variations [16].

FIQA algorithms depend on analyzing a face image to
extract features and measure certain aspects of the image. They
should be robust to numerous variations in the input images,
herein demographic variations. For instance, in a recent report
by Amnesty International [14], it is reported that ”Facial
recognition systems misidentify Black faces at a high rate.
Facial recognition is less accurate in identifying people with
darker skin tones—especially women”. The ISO/IEC CD3
on 29794-5 standard [16] states that A face image quality
assessment algorithm should be insensitive to demographic
factors such as age, skin-tone or ethnicity”. For instance,
given the two subjects in Figure 1 with two different skin
tones, we would expect a FIQA algorithm that is assessing
the illumination conditions, exposure, or natural color, to
give relatively similar results given the images were taken
under the same photo session setup made according to the
ICAO requirements formulated in ISO/IEC 39794-5 in Annex
D.1 [15]. Thus, when developing facial biometric systems or
FIQA methods, rigorous testing should be performed to make
sure the algorithms are robust to demographic differences to
uncover any major differences in performance.

Face image quality component measures in ISO/IEC 39794-
5 such as dynamic range, over- and under-exposure are mea-
sured on the skin of the face. These measures should be
carefully designed to take into consideration variations in skin
tones, and should not make assumptions about the true skin
tone of the subject as estimating the true skin tone from
an image is not a reliable process [13]. In 2021, Howard
et al. [13] presented a study that explores the relationship
between measured skin tone estimates from face images,
and ground-truth skin readings collected using a colormeter
device specifically designed to measure human skin. The study
established that skin tones estimated from different images of
the same subject varied significantly from the ground-truth
skin tone values. The study also showed that estimated skin
tone measures as part of a face recognition application lead
to erroneous results depending on algorithms measuring some
skin tone features across different skin tones, even for same
subject under different environmental conditions. The analysis
suggested that alternative methods that do not rely on the face
skin should be used to avoid any noisy or biased results [13].

One part of the face that has consistent color across all de-
mographic groups is the sclera of the eye, whose whitish color
has been shown to be a general characteristic of the human



eye [17] ! In a recent work, Kabbani et al. [18] demonstrated
that the behavior of the statistical features of the pixels of
the eye sclera region is consistent across demographic groups.
In this work, we examine the possibility of using the eye
sclera for the assessment of dynamic range, over- and under-
exposure components as an alternative FIQA approach which
is both agnostic to skin tones and a fair FIQA. We present a
comprehensive evaluation of dynamic range, over- and under-
exposure on sclera and compare it against the same measures
using the face image. We present a detailed analysis using
EDC analysis to demonstrate sclera as an alternative candidate
to estimate face image quality with similar performance while
being skin-tone agnostic FIQA measures.

II. RELATED WORKS

The eye sclera has received attention in the literature pri-
marily as a biometric recognition modality, not as a mean for
face image quality assessment modality. It has been shown that
sclera recognition, as one of the ocular traits, has high recogni-
tion accuracy and considerable user acceptance, and while iris
recognition is the primary technology in the ocular biometrics
group, sclera recognition, and particularly the vasculature of
the sclera, has recently been considered as a complement or
a substitute to iris recognition [26]. The vascular structure in
the sclera region is unique for each individual and relatively
stable over the subject’s life time. Early in 2012, Zhou et al.
[29] proposed to use sclera as a mean for uniquely identifying
subjects. They introduce a method for sclera segmentation,
and design a Gabor wavelet-based sclera pattern enhancement
method to emphasize and binarize the sclera vessel patterns
which are often blurry or have low contrast due to the highly
reflective nature of the sclera area. They also propose a
method to do feature extraction based on converting the vessel
structure to a set of single-pixel wide lines, which are then
used to create the subject’s sclera template. These templates
are later used for recognition. In 2021, Das et al. [6] propose
a lightweight deep learning model based on UNet architecture
for sclera segmentation, an unsupervised methods for vessel
extraction as well as a gaze detection model. They introduce
DeepR, a deep model for sclera recognition which compares
two vessel-structure pairs and produces a boolean output on
whether they match or not. The proposed methods are trained
and tested over the MASD dataset consisting of 164 subjects,
and the best reported results achieve 0.97 Area under the curve
(AUC) in recognition accuracy.

FIQA measures are undergoing a standardization process
in ISO/IEC 29794-5 standard [16], and a reference imple-
mentation is under development in the Open Source Face
Image Quality (OFIQ) project which will provide an open-
source framework than can be deployed in commercial and
government applications 2. A FIQA measure can be either an

IThe sclera can become reddish in some unusual and medical situations.
This happens when the small blood vessels on its surface become dilated or
irritated due to various potential causes such as dry eyes, allergies, infections,
Glaucoma, and Iritis. [19]

Zhttps://github.com/BSI-OFIQ/OFIQ-Project

end-to-end unified quality score, or a quality component that
addresses a specific component of the face image.

Many works in the literature proposed end-to-end unified
quality scores. In 2020, Terhorst et al. [27] present an unsu-
pervised approach for estimating a face image quality. The
proposed method assesses the variations in the embeddings
generated from random sub-networks of a face model. These
variations in a sample representation are used to produce a
unified score for a given face image. In 2021, Meng et al.
[21] present another unified quality score that depends on the
magnitude of the feature embedding of a face image. They
introduce a new loss for training a face recognition model, and
prove that the magnitude of the feature embedding, generated
by the trained model, monotonically increases as the subject
in a face image is more likely to be recognized. Later in 2021,
Boutros et al. [1] present a method for unified FIQA that
depends on measuring the relative sample classifiability which
is measured based on the allocation of the training sample
feature representation in angular space with respect to its class
center and the nearest negative class center. They illustrate that
there is a correlation between the face image quality and the
sample relative classifiability.

Many other works addressed individual quality components.
In 2021, Hernandez-Ortega [12] propose a framework to assess
several quality components such as exposure, unnatural color,
expression, pose, and background uniformity.The framework
assesses image exposure by detecting if the image is too dark
(or too bright) based on its mean pixel value. It uses a color-
detector to detect pixels with unnatural color, and a pretrained
CNN to detect the facial expression. In 2022, Yin and Chen
[28] introduce a face segmentation model that can be used to
detect the occluded parts of the face. In 2023, Grimmer et
al. [10] proposes an expression neutrality quality assessment
method, NeutrEx, that is based on the accumulated distances
of a 3D face reconstruction to a neutral expression anchor [4]
[8]. Many more methods exist for other quality components
such as assessing eyes openness > 4, and mouth closedness .

Bias in FIQA is a less explored topic in the literature.
A single work is found by Babnik and Struc [3] on bias
in FIQA with regard to end-to-end methods that produce a
unified quality score. They assess demographic bias in terms
of two demographic factors, sex and race, on a variety of
quality assessment methods. They find that general-purpose
image quality assessment methods, called no-reference IQA,
specifically, BRISQUE [22], NIQE [23] and RankIQA [20],
are less biased with respect to the two demographic factors
considered, and that dedicated face image quality assessment
methods, specifically, SDD-FIQA [24], MagFace [21], CR-
FIQA [1], and SER-FIQ [27] have strong bias with a tendency
to favor white individuals of either sex.

3https://github.com/sahnimanas/Fatigue-Detection
“https://github.com/zykev/eye_state
Shttps://github.com/mauckc/mouth-open



III. METHODS

In this section, we present the details on dataset, pre-
processing and evaluation approaches. Dataset: The dataset
used for the experiments is the Face Research Lab London
dataset (FRLL) [7]. The dataset contains 1020 full color
images of 1350x1350 pixels for 102 subjects. It contains five
pose variations per subject (frontal, left profile, right profile,
left 3 quarter, right 3 quarter) and two expression variations
(neutral and smiling). We use frontal images of each subject
in this work to avoid an overlay of impact from strong pose
variations on the recognition performance. Further, segmenting
the sclera region of both eyes is not possible with the profile
views for our analysis.

(a) Subject 1 (b) Subject 2

Fig. 2: Examples of non-compliant images due to low dynamic range

To be able to analyze and evaluate the FIQA algorithms on
demographic groups with different skin tones separately, the
dataset is divided into two subsets. The first subset contains
subjects of darker skin tone, we call it D-FRLL, and contains
in total 17 subjects (9 males, 8 females). The second subset
contains subjects of lighter skin tone, we call it L-FRLL, and
contains in total 57 subjects (24 males, 33 females). The rest of
the subjects were excluded either because they do not strictly
belong to either of the groups, or because of the presence of a
heavy beard for some male subjects. The subjects in each of
the subsets were selected based on manual visual inspection.
The FRLL is not a balanced dataset in terms of the number
of subjects in each skin tone category, but it is a good choice
for our analysis because the photos are taken in exactly the
same photo session setup, with the same lighting, pose and
expression conditions, making skin tone the only factor of
variation.

Augmentations: Evaluating the FIQA on D-FRLL and L-
FRLL will not produce representative results for the algorithms
as there is not enough variations in dynamic range or exposure.
Thus, to evaluate the FIQA algorithms and to examine differ-
ences in performance between using the face skin vs. using the
sclera, the two subsets are created with additional images by
introducing systematic synthetic variations in dynamic range
and exposure .

Preprocessing and skin extraction: After augmentation, all
datasets are processed such that the face is detected, aligned,
and the image is cropped to the face region only. Sample
and Computation Redistribution for Efficient Face Detection
(SCRFD) is used as a face detection method [11]. The face
skin is extracted using the face parsing network © standardized

Shttps://github.com/zllrunning/face-parsing.PyTorch

in ISO/IEC CD 29794-5 [16] and 19 different areas such as
hair, eyeglasses, eyes, eyebrows, nose, mouth and ears are
segmented. The sclera is extracted using the landmark based
method introduced in [18].

Face Recognition and FIQA: ArcFace [5] is used as
face recognition method for measuring the FRS performance.
“Error versus Discard Characteristic” (EDC) [26] are used to
analyze the quality of biometric sample and to report partial
Area Under Curve (pAUC).

IV. DYNAMIC RANGE

The ISO/IEC 39794-5 standard [15] specifies the following
requirement with regard to dynamic range. “The dynamic
range of the image should have at least 50% of intensity
variation in the face region of the image”. Figure 2 shows
examples of face images with non-compliant low dynamic
range.

The dynamic range assessment algorithm in this work is
adapted from ISO/IEC CD3 29794-5 [16] and illustrated in
Algorithm 1. Given face skin or sclera RGB data, it uses the
the luminance histogram of the input pixels, and computes its
entropy to produce an assessment value which is then mapped
to the range of [0-100] using a sigmoid function. Unlike the
algorithm described in the ISO/IEC CD3 29794-5 standard,
which takes as input a face image including the eyes and the
eyebrows, and uses 12.5 x H as the mapping function, this
one takes as input either the sclera region or the face skin
without eyes, eyebrows, lips, or teeth (if visible). It also uses
a sigmoid mapping function to obtain consistent output values
across different type of input.

Algorithm 1: Dynamic range quality assessment
Data: face skin or sclera RGB data
Result: dynamic range quality component value
[ < luminance(rgb);
hg,h1,- -+, har < histogram(l);
H + Ziio hilOgg(hi);
output <— round(100 * sigmoid(H,5,1));

To evaluate the algorithm, and given that the FRLL dataset
does not contain images with dynamic range variations. Aug-
mentations are applied to the images in the evaluation datasets
to synthetically produce various degrees of low dynamic range
images. The new evaluation datasets will be called DR-D-
FRLL, DR-L-FRLL, DR-FRLL for the dynamic range aug-
mented datasets D-FRLL, L-FRLL, and FRLL respectively.

Figure 3 shows the evaluation results of the dynamic range
assessment algorithm (Alg 1) on the DR-D-FRLL subset in
Figure 3b, the DR-L-FRLL subset in Figure 3c, and the
combined dataset DR-FRLL in Figure 3a. The EDC curves
show that the algorithm has similar performance whether the
input is the face skin or the sclera. This means that the
predictive capacity of both the face skin and the sclera with
regard to measuring dynamic range is the same. Furthermore,
dynamic range seems to have a strong impact on the face



Over-exposure | Under-exposure | Low Dynamic Range
Measure Sclera | Face | Sclera | Face Sclera | Face
Chi-Squared Distance | 0.09 0.60 | 0.05 10.15 | 0.02 0.20
Hellinger Distance 0.19 097 | 054 0.87 0.18 1.0

Tab. I: Comparison of the distances between the sclera histograms
and the face skin histograms of subject 1 and 2 in three types of image
conditions and on two distance measures. It is clear that under the
three image conditions, the distance between the sclera histograms
for light and dark skin tone subjects is always much smaller than the
corresponding face skin distance.

recognition performance given how the curve is descending
consistently as more lower quality images are discarded. It
is also noticeable that dynamic range has less impact on the
face recognition performance for people with darker skin tone
given that the error rate descends rapidly as a small portion of
images is discarded, while the error rate falls at a much slower
pace as lower quality images are discarded for the lighter skin
tone individuals.

Dynamic Range Dynamic Range Dynamic Range

aaaaaaaaa

(a) All (b) Dark (c) Light

Fig. 3: Dynamic range EDC curves for face vs. sclera with a starting
error rate of 0.05 and ArcFace as face recognition system.
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Fig. 4: Normal vs. Low dynamic range for face skin vs. sclera

Figure 4 shows the luminance histograms of normal vs. low
dynamic range, and face skin vs. sclera images of two sample
subjects. Figure 4a on the left shows the histograms for the
face skin and Figure 4b on the right shows the ones for the
sclera. It is very clear in both cases how the low dynamic
range images have spiky histograms with less spread values
since the bit range of the individual pixels is limited compared
to normal images. It is also clear that the histograms for both
the normal and the low dynamic range images differ between
light and dark skin tone subjects, while they are much more
similar for the sclera histograms. Column 3 in Table I shows
that the distance between the two sclera histograms is much
smaller than the distance between the two face skin histograms
of the low dynamic range images on two distance measures.

V. UNDER AND OVER EXPOSURE

The ISO/IEC 39794-5 standard [15] specifies the following
requirement with regard to exposure. "The face portrait shall

have appropriate brightness and good contrast between face,
hair and background”. Figure 5 shows examples of face
images with non compliant under and over exposure.
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(a) Under exposure (b) Over exposure
Fig. 5: Examples of non-compliant exposure

The under exposure assessment algorithm in this work is
the same as the one described in ISO/IEC CD3 29794-5 [16]
adapted to accept the face skin or the sclera as input. The
algorithm is illustrated in Algorithm 2. Given skin face or
sclera RGB data, it uses the luminance histogram to produce
an assessment value based on the number of low luminance
values which is then mapped to the range of [0-100].

Algorithm 2: Under exposure quality assessment

Data: face skin or sclera RGB data

Result: under exposure quality component value
[ < luminance(rgb);

ho,hi, -+, hyr < histogram(l);

CA Zfio hi;

output <— round(100 * (1 — v));

Over Exposure Over Exposure Over Exposure
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Fig. 6: Over exposure EDC curves for face vs. sclera with a starting
error rate of 0.1 and ArcFace as face recognition system.

The over exposure assessment algorithm is also the same as
the one described in ISO/IEC CD3 29794-5 [16] but adapted
to accept the face skin or the sclera as input and with a
different mapping function in the last step. It uses the same
mapping function as the one for the under exposure algorithm
because it was found to give better output values in terms of
the distribution of values in the range [0,100]. The algorithm
is illustrated in Algorithm 3. Given skin face or sclera RGB
data, it uses the luminance histogram to produce an assessment
value based on the number of high luminance values which is
then mapped to the range of [0-100].

To evaluate both algorithms, and given that the FRLL
dataset does not contain images with different exposure con-
ditions, augmentations are applied to the images in the evalua-
tion datasets to synthetically produce under and over exposed
images. The new evaluation datasets will be called EX-D-
FRLL, EX-L-FRLL, EX-FRLL for the exposure augmented
datasets D-FRLL, L-FRLL, and FRLL respectively.



Algorithm 3: Over exposure quality assessment

Data: face skin or sclera RGB data

Result: over exposure quality component value
I < luminance(rgb);

ho,hi,- -+, har < histogram(l);

Chla 252247 his

output < round(100 (1 — v));

Figure 6 shows the evaluation results of the over exposure
assessment algorithm (Alg 3) on the EX-D-FRLL subset in
Figure 6b, the EX-L-FRLL subset in Figure 6c, and the
combined dataset EX-FRLL in Figure 6a. The EDC curves
show that the algorithm has similar performance whether the
input is the face skin or the sclera wih slight advantage to
the face skin. This means that the predictive capacity of both
the face skin and the sclera with regard to over exposure is
the same. Furthermore, it shows that over exposure has more
impact on the darker skin tone as the face recognition error
rate does not fall in the same way as for lighter skin tone
subjects even as the portion of discarded lower quality images
increases.

Figure 7 shows the evaluation results of the under exposure
assessment algorithm (Alg 2) on the EX-D-FRLL subset in
Figure 7b, the EX-L-FRLL subset in Figure 7c, and the
combined dataset EX-FRLL in Figure 7a. The EDC curves
show that the algorithm has similar performance whether the
input is the face skin or the sclera. This means that the
predictive capacity of both the face skin and the sclera with
regard to under exposure is the same. Furthermore, it shows
that under exposure has a very strong impact on the face
recognition performance because the error rate does not fall
considerably even after a large portion of the lowest quality
images are discarded, and the impact is more or less the same
for darker and lighter skin tone subjects.

Under Exposure Under Exposure Under Exposure

(a) All (b) Dark (c) Light

Fig. 7: Under exposure EDC curves for face vs. sclera with a starting
error rate of 0.05 and ArcFace as face recognition system.

Figure 8 shows the luminance histograms of normal vs.
over exposed, and face skin vs. sclera images of two subjects.
Figure 8a on the left shows the histograms for the face skin
and Figure 8b on the right shows the ones for the sclera. It can
be seen from the histograms that, as expected, over exposure
increases the luminance values and pushes them toward the
right, and this is true for both face skin and sclera.

Column 1 in Table I shows that the distance between the two
sclera histograms is much smaller than the distance between
the two face skin histograms of the over exposed images on

Light skin subject Light skin subject

o 50 100 150 200 250 o EY 0 200 250
luminance luminance

Dark skin subject Dark skin subject

[ 50 100 150 200 250 o 50 100 150 200 250
luminance luminance

(a) Face (b) Sclera
Fig. 8: Normal vs. Over exposure for face skin vs. sclera

two distance measures.

Figure 9 shows the luminance histograms of normal vs.
under exposed, and face skin vs. sclera images of two subjects.
Figure 9a on the left shows the histograms for the face skin
and Figure 9b on the right shows the ones for the sclera. It can
be seen from the histograms that under exposure decreases the
luminance values and limits their range, and this is true for
both face skin and sclera. Column 2 in Table I shows that the
distance between the two sclera histograms is much smaller
than the distance between the two face skin histograms of the
under exposed images on two distance measures.

Light skin subject Light skin subject
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=3 normal =3 normal
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(a) Face (b) Sclera
Fig. 9: Normal vs. Under exposure for face skin vs. sclera

VI. CONCLUSION AND FUTURE WORK

Face image quality assessment is important for obtaining
high face recognition performance. Face recognition systems,
as well as FIQA algorithms, should be fair, and perform
consistently across different demographic groups. This work
investigated the use of the eye sclera as an alternative to face
skin for assessing some quality components of a face image.
It examined closely three face image quality components,
namely, dynamic range, over- and under exposure, and im-
plemented corresponding quality assessment algorithms. The
algorithms are adapted from ISO/IEC CD3 29394-5 and have
been adjusted to work with the face skin and sclera data. The
evaluation results show that the eye sclera has very similar
predictive capacity in assessing the quality of a face image
with compared to the face skin. Thus, it can be used as a
supplementary or an alternative method for a fully skin tone
agnostic mechanism for assessing these quality factors to make
sure that no bias is present in the assessment.

Future work can look at extending this approach to other
quality components and examine whether the eye sclera has
the same predictive capacity as the face skin with regard to
other aspects of the face image.
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