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Abstract—Face morphing attacks pose a serious threat to
existing face recognition systems. As a number of studies have
shown, existing face recognition systems and human experts can
be fooled by morphed facial images. Based on these findings
various approaches to morphing attack detection have been
published. Automated morphing attack detection is still a young
branch of research with many recent publications.

Using features extracted by different feature extractors we
develop a score-level based fusion approach. The scores are gen-
erated by different classifiers with optimised hyperparameters.
We use different approaches to determine the weights for the
sum-rule: grid-search and random forests scoring function as
well as normalised scores.

We notice that a weighted score-level fusion can achieve
improved results. Moreover, we observe that weights determined
by grid-search might lead to better results when using fewer
scores compared to those obtained by random forest while the
former is more time consuming. However, both random forest
and grid-search weights can significantly improve the morphing
attack detection performance.

Index Terms—Face Morphing, Hyperparameter Optimisation,
Morphing Attack Detection, Biometric Fusion

I. INTRODUCTION

Face Morphing poses a serious threat to existing face recog-
nition systems which are used in many application scenarios
- in particular in Automated Border Control (ABC). As first
shown in [1], two individuals can reach a match decision when
being compared to a single morphed reference created from
facial images of these individuals. Using this method ABC
systems as well border control guards can be circumvented by
using a passport containing a morphed image.

Morphing is the targeted combination of two or more
(facial) images, where the correspondence between striking
characteristics (so called landmarks) is determined. These
corresponding landmarks are geometrically aligned e.g. using
Delaunay triangulation. This results in a distortion of the
image - this is referred to as warping - and the landmarks of
each individual can be weighted by an ↵-value (↵w). Lastly the
texture values of both images are blended - the texture values
can also be weighted by an ↵-value (↵b) [2]. Examples for
landmarks (Figure 1a) and the resulting Delaunay triangulation
(Figure 1b) as well as examples for different warping and
blending values (Figure 1c) can be seen in Figure 1.

This research work has been funded by the German Federal Ministry
of Education and Research and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

(a) Example of landmark posi-
tions extracted by Dlib

(b) Example of the resulting De-
launay triangulation

(c) Example for warping and blending ↵-value

Fig. 1: Example of a morphing process: (a) landmark detec-
tion, (b) triangulation, (c) warping and blending with different
weights between two facial image (From: [2])
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Since the first publication various approaches for Morphing
Attack Detection (MAD) have been suggested, however the
detection performance of these approaches is still improvable.
Therefore, this paper will evaluate the results of a score-
level fusion approach to MAD. Our approach uses score-level
fusion and different algorithms to determine the weights for
the fusion. In addition the models were trained using optimised
hyperparameters.

This paper is structured as follows. In section II we will give
an overview of related work and used metrics. In section III the
dataset will be briefly introduced and in section IV the fusion
approaches will be explained. The results of our evaluation will
be presented in section V. Finally our conclusions are drawn
in section VI and future work is discussed in section VII.

II. BACKGROUND

This section gives an outline of used metrics, the basic
concept of MAD, and related work.

A. Metrics
The following metrics are used in this work:

Attack Presentation Classification Error Rate: The
Attack Presentation Classification Error Rate (APCER)
is the proportion of attack presentations classified as
bona fide presentations [3].

BonaFide Presentation Classification Error Rate: The
Bonafide Presentation Classification Error Rate (BPCER)
is the proportion of bona fide presentations classified as
attack presentations [3].

BPCER10: Is the BPCER where the APCER is 10% [3].
BPCER20: Is the BPCER where the APCER is 5% [3].
Detection Equal Error Rate: The Detection Equal Error

Rate (D-EER) is the operating point where APCER and
BPCER are equal [4].

B. Morphing Attack Detection
MAD can be divided into two categories:

Single image MAD: If only the suspected face image is
available, single image MAD (S-MAD) can be applied. In
this scenario only a single image is parsed and evaluated.
One example for S-MAD is the passport application
process, when a printed face image is submitted and
scanned.

Differential MAD: For differential MAD (D-MAD) the sus-
pected image and a trustworthy image (e.g. a trusted live
capture) are compared to each other. D-MAD could for
example be applied in an ABC scenario [2].

Most S-MAD algorithms can be extended to D-MAD al-
gorithms. However, some MAD algorithms need a trusted
live capture and can therefore only be used as D-MAD. One
of which is a landmark-based approach. For landmark-based
approaches the absolute coordinates of the landmarks from
both images are normalised and the Euclidean distance is
computed or the angle between the landmarks is used to
counter the variations of two images in expressions or pose.
For this the angle is normalised to a range of 0� to 180� [5].

Some approaches are more suitable for S-MAD while
various approaches can be used for S-MAD and D-MAD some
of which were used in our experiments.

1) Image Noise Pattern: Image noise pattern approaches
are more suitable for S-MAD than for D-MAD. Images taken
with a modern digital camera have certain noise pattern. These
patterns can be extracted and analysed. If, however, a morphed
image is analysed, then a combination of at least two patterns
will be found. Due to the alignment of the landmarks during
the morphing process, the patterns can also be distorted and
therefore altered. One approach [6] related to image noise
patterns is Photo Response Non-Uniformity (PRNU) analysis,
where the unique PRNU-pattern is extracted and analysed [6]–
[8]. In their approach [6] the authors conclude, that although
their approach is robust against image scaling and sharpening,
it is not robust against histogram equalisation and further
research is needed.

2) Texture Descriptors: Texture descriptors are suitable for
S-MAD as well as D-MAD. Prominent examples for texture
descriptors are Local Binary Pattern (LBP) and Binarized
Statistical Image Features (BSIF). Specific artefacts may result
from the morphing process. Texture descriptors can be used
to detect these artefacts. The most common artefacts occur in
the region of the eyes and ghost artefacts surrounding the neck
and hair (for automated morphs). Ghost artefacts are the results
of too few landmarks in a region. As a results the blending
and warping process is imprecise and results in blurry regions
[9]. A comparison between an automatically and manually
morphed image is shown in Figure 2.

3) Deep Features: Deep Features like texture descriptors
are suitable for S-MAD and D-MAD. In addition to texture
descriptors or image noise pattern, machine learning can be
used to extract meaningful features from a facial image. The
difficulty lies within the training of the feature extractor to
avoid overfitting. However, a number of pre-trained models
for face recognition are available, like ArcFace and FaceNet.
These convolutional neural networks compute a feature vector
which can be analysed for MAD [10], [11].

4) Generative Adversarial Nets: Generative Adversarial
Nets (GANs) are a machine learning approach where two
models are used to train each other. These two models are
not working together but against each other, hence the name
adversarial. One of the models is called generative model -
it generates morphed images from non-morphed images - the
other is called discriminative model - it is trained to estimate
whether an image is generated or a bona fide image. The
estimations are returned to the generative model which uses
the predictions to generate more realistic morphs [12]. With
every iteration the morphed images become more realistic and
harder to detect, but, as a result, the discriminative model also
evolves and becomes better in differentiating between morphed
and non-morphed images [13].

GANs can be used used for MAD in various ways, one of
which is a face de-morphing GAN-based approach introduced
in [14]. Face de-morphing subtracts the trusted live capture
from the suspected image by applying a reversed morphing
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(a) Subject 1 (From: [9]) (b) Subject 2 (From: [9])

(c) Automatically morphed - show-
ing artefacts around the iris, hair,
and neck (From: [9])

(d) Manually morphed - showing
no (human visible) artefacts (From:
[9])

Fig. 2: Comparison of a manual and automated morph (From:
[9])

operation. The resulting image is then compared to the live
capture. If it was a morphed image the accomplice should
remain, otherwise the subject should remain and a verdict can
be reached based on the result. The authors of [14] introduce
a face de-morphing GAN (FD-GAN). Although there are still
unsolved problems, the FD-GAN can achieve good results in
the author’s experimental environment [14].

C. Related Work

The authors of [15] published a multi-algorithm fusion
approach to S-MAD using OpenCV to generate the morphed
images.

The authors of [16] introduce a method to adopt the
Dempster-Shafer theory to MAD. The authors combine various
individual MAD methods using Dempster-Shafer theory. Their
experiments show that their fusion approach improves the
accuracy of the results significantly, compared to the individ-
ual detectors and also compared to fusion approaches using
majority voting or an unweighted sum-rule [16].

The authors of [17] point out the difficulty of S-MAD
compared to D-MAD, as all information need to be taken from
one image without any reference and introduce an approach

to improve S-MAD using an ensemble of features. Their
experiments indicate a significant improvement in robustness
and reliability, especially to different types of printers on their
datasets [17].

Unlike the authors of [15] and those of [17] we use S-
MAD and D-MAD, as well as morphed facial images created
using FaceFusion1, FaceMorpher2, a morphing tool of the
University of Bologna, and OpenCV3 [18]. In comparison to
the authors of [16] we combine scores using the sum-rule,
however, we also reach the conclusion that the unweighted
sum-rule achieves weak results compared to a weighted sum-
rule.

The authors of [19] explain various weighting approaches
for multi-biometric-fusion and propose two additional ap-
proaches. We use three different approaches for weighting
using equal weights, brute force weights and the feature
importance decided by random forest. These approaches will
be discussed in more detail in section IV.

The authors of [20] focus on decreasing the BPCER. They
also address the low generalisation in MAD when using
different morphing techniques.

III. DATASET

The morphing database used for this work is based on two
databases - FERET and FRGCv2 [21], [22] - which were
extended by morphed facial images. All images were post-
processed in various ways to ensure a diverse dataset and the
morphed images were created using four different morphing
algorithms (FaceFusion, FaceMorpher, OpenCV, and UBO-
MA4). For a more detailed description of the database we refer
to [18]. Models trained on FERET were evaluated on FRGCv2
and vice versa. All models were trained on unprocessed
images, to evaluate the effect that post-processing has on
MAD. For classification four different algorithms were used -
Support Vector Machines (SVMs), Random Forest, AdaBoost,
and GradientBoosting - whose hyperparameters were tuned in
three different ways: using grid-search, a genetic algorithm,
and Bayesian Optimisation. For our fusion we chose twenty
models evaluated on sixteen different test sets each resulting
in 320 scores for each database. We used these conventional
classifiers as they are easier to train than neural net classifier.

IV. FUSION APPROACH

This section will give a short introduction to biometric
fusion applicable to the context of MAD and explain our
fusion approach.

A. Biometric Fusion

There are various approaches to biometric fusion which
are described in detail in [23], [24]. Mainly three levels of
fusion are mentioned: feature-level fusion, score-level fusion

1www.wearemoment.com/FaceFusion/
2github.com/alyssaq/facemorpher
3www.learnopencv.com/face-morph-using-opencv-cpp-python/
4The morphing tool provided by the University of Bologna.
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and decision-level fusion. In our approach, we used a multi-
algorithm score-level-based approach. We varied the amount
of algorithms used in the fusion, using two, three, four, five, fif-
teen or twenty scores. For every trained model we got sixteen
scores, as we tested each model on all post-processing methods
and every morphing algorithm. For example a model trained on
FERET with differential features extracted by ArcFace using
no post-processing and morphs generated by OpenCV would
be evaluated on FRGCv2 with differential features extracted
by ArcFace and all four post-processing methods and all four
morphing tools. Out of all these scores the twenty overall best
scores were chosen for each morphing tool. This included
some scores from overfitted models which we decided to
use in order to test the weighting of the following sum-rule
implementations.

Our fusion approach was implemented based on the sum-
rule:

s =
X

i

wisi (1)

where the wi is the weight for the i-th score si.

B. Score-Level Fusion

In a first approach we decided to use a normalised score
over all scores in the fusion-group. We tested all possible
combinations of the best twenty scores of each morphing
tool. While some unweighted setups - mostly those consisting
of Deep Features like ArcFace, FaceNet, or Eyedea and
Texture Descriptors like BSIF and LBP - could result in an
improvement of the D-EER, most unweighted setups resulted
in a deterioration.

C. Weighted Score-Level Fusion

To achieve better results we decided to adjust the weights
for the scores using two different approaches: grid-search and
random forest.

1) Grid-Search: We implemented a grid-search trying dif-
ferent weights between zero and one for each score under the
condition that the sum of all weights equals one. For each
weight combination a weighted-sum score is evaluated and
the best weights are returned. However, the runtime increased
exponentially - as the grid grew exponentially - and the
approach was only used for fusion-groups up to size four.

2) Random Forest: The other weighted approach was im-
plemented using random forest. Here the single scores are used
to create a matrix which is then used to fit an sklearn Random-
ForestClassifier model. Afterwards the feature importance of
that classifier is used to determine the weight of each score.
Using the determined weights a weighted score for the fusion-
group is calculated.

D. Creation of Fusion Groups

We started with fusing groups of size two up to size twenty.
Two as it was the minimum and twenty as it was the maximum.
Then we chose fifteen to have an bigger fusion-group but lower
than twenty. The sizes three, four and five were chosen to see

TABLE I: Abbreviations

Name Abbreviation

Post-processing
no post-processing N
resized R
print/scan P

Feature Extractor

ArcFace A
Eyedea E
LBP L
LM-Wing W
FaceNet F
BSIF B

Optimisation Algorithm

grid-search 1
genetic algorithm 2
bayesian optimisation 3
no optimisation 4

Morphing Algorithm

FaceFusion f
FaceMorpher m
OpenCV o
UBO-MA u

Classifier

SVM s
Random Forest r
AdaBoost a
GradientBoosting g

MAD-Type single MAD S
differential MAD D

if an steady improvement could be observed by increasing the
size one by one.

We used six different feature extractors: (1) LM-Wing -
which is a landmark-based feature extractor and therefore only
suitable for D-MAD, (2) ArcFace, Eyedea, and FaceNet -
which are deep feature based and are suitable for S-MAD and
D-MAD, and (3) LBP and BSIF - which are texture descriptors
and are also used for S-MAD and D-MAD.

The most interesting results were achieved by training on
FRGCv2 and evaluating on FERET. Due to the highly com-
plex combinations of hyperparameter optimisation algorithms,
feature extractor and morphing algorithm for each training
and testing set, we used a combination of case-sensitive one-
letter abbreviations - which can be seen in Table I - to refer
to the scores. In Table II the setups for the most promising
fusion-groups of size four are displayed. Each setup contains
four scores, and each of those scores consist of a feature
extractor, a post-processing method and a morphing algorithm
used on the training database and the same for the testing
database, a optimisation algorithm, a classifier and the MAD-
type. The most promising setups for fusion-groups of size
fifteen can be seen in Table III. Each column contains one
setup. Each setup is composed of four or fifteen scores. Every
score gives information on 1) the used feature extractor, 2) the
post-processing method and morphing tool used for training,
3) the post-processing method and morphing tool used for
testing, 4) the optimisation algorithm and the used classifier,
and 5) the MAD-type.

V. EVALUATION

For our evaluation we separately assessed the different
fusion-group sizes focussing on the five most promising re-
sults. We used the smallest D-EER of the scores in the fusion-
group as reference for the improvement and calculated the
relative improvement (or deterioration) in percent as shown

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on January 11,2025 at 09:57:30 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Five setups achieving the best results for a fusion
of four scores (weighted with grid-search).

Setup 4-0 Setup 4-1 Setup 4-2 Setup 4-3 Setup 4-4
Weighted Grid Grid Grid Grid Grid

Score 1

E E E A A
N-f N-f N-f N-o N-o
N-m N-m N-m R-o N-m
1-r 1-r 1-r 4-s 2-a
D D D D D

Score 2

F F F A E
N-f N-u N-f N-o N-o
N-m N-m N-m R-o N-m
1-r 3-s 2-g 2-a 1-a
D D D D D

Score 3

L L L B B
N-m N-m N-m N-u N-u
N-m N-m N-m R-o N-m
3-g 3-g 3-g 3-g 3-g
D D D D D

Score 4

W W W L L
N-o N-o N-o N-m N-m
N-m N-m N-m R-o N-m
3-g 3-g 3-g 3-g 3-g
D D D S S

in Equation (2). We decided to use the D-EER instead of
focusing on APCER or BPCER to generate an upper border for
the error rates. Since the D-EER is the operating point where
APCER and BPCER are equal, both APCER and BPCER can
be optimised below the D-EER value.

diff =
EERgroup

EERmin
� 1 (2)

If the best D-EER of the group was 0.90% and the group D-
EER was 0.26% the relative improvement would be �71.43%
- which is the best observed improvement for our experiments.

Some of the results for our random forest weights showed
anomalies, as weighting both scores in a fusion-group of size
two with zero. Resulting in an D-EER of 50%. As no real
insight could be gained from these results, we decided to
drop these results from our analysis. Furthermore, weighting
with random forest sometimes resulted in weighting the worst
model the highest, since random forest uses correlation to
determine the weights. If a model overfitted during training
the D-EER can be above 95% which would result in a very
high correlation - however reversed.

For fusion-groups up to size four a steady improvement can
be seen for grid-search. Fusion-groups of size fifteen weighted
using random forest achieve almost the same improvement as
fusion-groups of size four using grid-search to determine the
weights. For fusion-groups of size twenty no improvement
could be observed.

The most promising results are achieved by fusion-groups
of size four when using grid-search weights and fusion-groups
of size fifteen when using random forest to determine the
weights. They mostly consist of scores from texture descriptors
and deep features.

A. Fusion-Groups of Size Four
The weights for the most promising fusion-groups of size

four are determined using grid-search. Since, grid-search is
an exhaustive search it can become very time-consuming. As

TABLE III: Five setups achieving the best results for a fusion
of fifteen scores (weighted with random forest).

Setup 15-0 Setup 15-1 Setup 15-2 Setup 15-3 Setup 15-4
Weighted RF RF RF RF RF

Score 1

A A A A A
N-o N-o N-o N-o N-o
N-o N-o N-o N-o N-o
4-s 4-s 4-s 4-s 4 -s
D D D D D

Score 2

A A A A A
N-o N-o N-o N-o N-o
N-o N-o N-o N-o N-o
1-g 1-r 1-g 1-g 1-g
D D D D D

Score 3

A A A A A
N-o N-o N-o N-o N-o
N-o N-o N-o N-o N-o
1-r 2-a 1-r 1-r 1-r
D D D D D

Score 4

A E A A A
N-o N-f N-o N-o N-o
N-o N-o N-o N-o N-o
2-a 1-r 2-a 2-a 2-a
D D D D D

Score 5

E E E E E
N-u N-o N-u N-u N-u
N-o N-o N-o N-o N-o
4-s 1-a 4-s 4-s 4-s
D D D D D

Score 6

L W E E L
N-o N-u N-f N-f N-o
N-o N-o N-o N-o N-o
3-r 1-s 1-r 1-r 3-r
D D D D D

Score 7

E F E E E
N-f N-f N-o N-o N-f
N-o N-o N-o N-o N-o
1-r 1-r 1-a 1-a 1-r
D D D D D

Score 8

E W F F E
N-o N-o N-f N-f N-o
N-o N-o N-o N-o N-o
1-a 1-a 1-r 1-r 1-a
D D D D D

Score 9

W F W W W
N-u N-u N-o N-o N-u
N-o N-o N-o N-o N-o
1-s 3-s 1-a 1-a 1-s
D D D D D

Score 10

F W F F F
N-f N-m N-u N-u N-f
N-o N-o N-o N-o N-o
1-r 3-r 3-s 3-s 1-r
D D D D D

Score 11

W B B W W
N-o N-u N-u N-m N-o
N-o N-o N-o N-o N-o
1-a 3-g 3-g 3-r 1-a
D D D D D

Score 12

F F F B F
N-u N-f N-f N-u N-u
N-o N-o N-o N-o N-o
3-s 1-a 1-a 3-g 3-s
D D D D D

Score 13

L L L L F
N-m N-m N-m N-m N-f
N-o N-o N-o N-o N-o
1-s 1-s 1-s 1-s 1-a
S S S S D

Score 14

L L L L L
N-m N-m N-m N-m N-m
N-o N-o N-o N-o N-o
3-g 3-g 3-g 3-g 1-s
S S S S S

Score 15

W W W W L
N-o N-o N-o N-o N-m
N-o N-o N-o N-o N-o
3-g 3-g 3-g 3-g 3-g
D D D D S
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TABLE IV: The results achieved by the five setups for a fusion
of four scores.

Group D-EER BPCER10 BPCER20 min. D-EER Diff (%)
Setup 4-3 0.26% 0.00% 0.13% 0.90% -71.43%
Setup 4-4 0.52% 0.13% 0.26% 1.80% -71.43%
Setup 4-2 1.68% 0.52% 0.90% 5.57% -69.92%
Setup 4-0 1.80% 0.39% 1.16% 5.57% -67.61%
Setup 4-1 1.80% 0.26% 1.55% 5.57% -67.61%

the amount of combinations and, therefore, also the amount
of time needed for each grid grows exponentially with ever
added score we used grid-search only up to fusions groups of
size four. All Setups consist of at least two deep features and
one texture descriptor. While the two most promising results
contain only deep features and texture descriptors, promising
results can also be achieved when including a landmark-based
feature extractor. As can be seen in Table IV all D-EERs are
below 2%. However, the two most promising results are below
1%. Another notable difference between these two setups and
the other setups is that the most promising two fuse scores of
D-MAD and S-MAD, while the other setups use only D-MAD
scores.

It is notable, that the best two fusion-groups consist of only
deep features and texture descriptors and use models trained on
different morphing algorithms and use S-MAD and D-MAD
to achieve their results. In addition, all of these groups use
grid-search to determine their weights. Setup 4-0, 4-1, and
4-2 only differ by one score the results are similar. Setup 4-
3, and 4-4 differ by two models and although the difference
between the smallest D-EER of the single algorithms and the
achieved fusion D-EER is the same, the D-EER for Setup 4-3
is twice as good as Setup 4-4, as the smallest single algorithm
D-EER is twice as good.

B. Fusion-Groups of Size Fifteen

For fusion-groups of size fifteen random forest determines
weights that lead to the same improvement as grid-search for
fusion-groups of size four. However, in a significantly shorter
period of time. Grid-search might lead to good results as well
for fusion-groups of size fifteen. However, it would take more
than 1100 years to run our approach for fusion-groups of
size ten. Therefore, we were limited to normalising the scores
and using weights determined by random forest for fusion-
groups of size fifteen. As can be seen in Table IV the five
most promising results all achieve an D-EER below 0.5%
and all setups contain S-MAD and D-MAD scores. In our
experiments the most promising results were achieved by not
only fusion different feature extractors and classifiers but also
S-MAD and D-MAD. However, a cause-effect relation cannot
be made for certain as a significant deterioration in the D-EER
could observed when fusing scores of S-MAD and D-MAD
in setups using texture descriptors and landmark-based feature
extractors. Since most of the scores used in the fusion-groups
of size fifteen are part of every of those fusion-group, the
results are similar.

TABLE V: The results achieved by the five setups for a fusion
of fifteen scores.

Group D-EER BPCER10 BPCER20 min. D-EER Diff (%)
Setup 15-2 0.26% 0.00% 0.13% 0.90% -71.43%
Setup 15-1 0.26% 0.00% 0.13% 0.90% -71.43%
Setup 15-4 0.39% 0.00% 0.13% 0.90% -57.14%
Setup 15-0 0.39% 0.00% 0.13% 0.90% -57.14%
Setup 15-3 0.39% 0.00% 0.13% 0.90% -57.14%

VI. CONCLUSION

Our results suggest that fusing deep features and texture
descriptors leads to the most promising results, while fusing
only scores of the same feature extractor - generated using
different classifiers and hyperparameter optimisation methods
- mostly did not result in any improvement.

The results of the unweighted approach could not compete
with those of the weighted approaches. For grid-search weights
the most promising results were achieved fusing groups of
four and for random forest when fusing groups of fifteen.
Both achieve a relative improvement of �71.43% compared
to the best score in the fusion-group. However, random forest
is less time consuming than grid-search. In conclusion, if less
scores are available, using grid-search to adjust the weights is
feasible up to a group size of four and achieves good results, if,
however, time is a relevant factor and more scores are available
random forest can be used to achieve equally good results.
The results of our weighted experiments indicate a significant
improvement compared to individual MAD methods and com-
pared to our unweighted results.

VII. FUTURE WORK

Due to time constraints we did not adjust random forest’s
scoring function, however, our results suggest that doing so
could improve the random forest results. Hence, a time-
efficient alternative to grid-search could be created. Further-
more, a validation of our results on a larger scale dataset
would be interesting. In order to obtain such results a C++-
implementation of our MAD method has been submitted to
the NIST FRVT MORPH benchmark [25]. The MIPGAN-
approach for generating morphed facial images introduced in
[26] will be part of the NIST FRVT MORPH benchmark
report. The results of the submitted method should therefore
give an indication for its robustness towards GAN-generated
morphs.

We only fused models based on features extracted by
texture descriptors, deep features and landmarks. However,
various other approaches exist and seem promising e.g. image
noise pattern based feature extractors. Including these could
positively influence the results and improve the D-EER even
further.
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