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Abstract: Finger image quality assessment is a crucial part of any system where a high biometric performance and user
satisfaction is desired. Several algorithms measuring selected aspects of finger image quality have been proposed in the
literature, yet only few of them have found their way into quality assessment algorithms used in practice. The authors
provide comprehensive algorithm descriptions and make available implementations of adaptations of ten quality
assessment algorithms from the literature which operates at the local or the global image level. They evaluate the
performance on four datasets in terms of the capability in determining samples causing false non-matches and by their
Spearman correlation with sample utility. The authors’ evaluation shows that both the capability in rejecting samples
causing false non-matches and the correlation between features varies depending on the dataset.

1 Introduction

In large-scale automated fingerprint identification system, there will
be a fraction of individuals who are unable to interact with the
biometric sensor in the intended way and there will be a certain
fraction of individuals who will try to avoid detection. In both
cases, quality control in the signal processing subsystem of the
biometric system must give an actionable response to the
interacting individual or a supervising individual such that errors
are addressed immediately.

At the border controls of Japan and the United States of America,
an individual may be rejected entry if the biometric probe sample
captured from the individual matches with a biometric reference
already registered in a database, or a watch-list. Consequently, for
negative biometric claims a situation can arise where an individual
supplies a low quality probe sample on purpose, with the aim of
minimising the risk of detection. Thus, without a method of
determining whether the quality of the captured probe sample is
reaching a sufficient level for recognition purposes, an individual
can subvert the system. The scenario is substantiated by the
findings in [1–3], where it is established that there is a strong
correlation between fingerprint image quality and biometric
performance. Determining the quality of a fingerprint finds use in
other scenarios such as immigration where an individual can apply
for a visa at the embassy or consulate for a given country. To
verify that the identity of the individual at the border control is
indeed the same as the one who received the visa at the country’s
consulate, a fingerprint capture is performed at the time of the
application. Thus the subject is enrolled in the biometric system
and can be identified at a subsequent border crossing.

In Europe, such a system for the exchange of visa data is being
implemented for the Schengen area and is known as the Visa
Information System (VIS). Its stated purpose is to facilitate the visa
application procedure, the fight against fraud and the prevention of
visa shopping. Thus the new system shall contribute to the
prevention of threats to European countries’ internal security. The
Council of the European Union (EU) decided to establish the VIS
on 8 June 2004 [4] and the European Commission (EC) determined
on 30 November 2009 that the VIS should be implemented
progressively starting with visa applications first from the North
Africa, second the Near East and third the Gulf Region [5].

The VIS has a centralised structure with a central information
system, the Central Visa Information System (CS-VIS) and the
National Interfaces Visa Information System (NI-VIS).
Alphanumeric data as well as biometric data, in particular
fingerprints and photographs, are stored in the CS-VIS which can
be queried through the NI-VIS by authorised staff of the visa
authorities in member states. The standard use case for a query is
a Schengen border crossing point, where probe fingerprint images
of the traveller are compared against the reference fingerprint
images of the visa applicant. The biometric data entering the VIS
has to pass certain quality requirements on the local and central
levels. The EC has provided member states with a dedicated
software kit, known as Kit 4 – Quality Check (USK4) [6], which
is used to validate the quality of all fingerprints prior to being
inserted in the central system. In the period October 2011 until
June 2012 results from consular posts show that around 11% of all
visa applications containing fingerprint image failed to meet the
local quality assurance [7].

A different approach to biometric border control exists in the
United States and is managed under Department of Homeland
Security (DHS). Office of Biometric Identity Management (OBIM)
which replaced United States Visitor and Immigrant Status
Indicator Technology (US-VISIT) in March 2013 is an
immigration and border control system used for registering all
non-residents entering or exiting the United States of America.
Fingerprints are an integral part of the system supporting the goal
of establishing an identity to a subject. Having an identity and
subject linked allows for checks against watch lists, verification of
existing identity documentation such as passports, and discovery
of attempted fraudulent identification. In addition to the
fingerprint, a face mug shot is also recorded for manual validation
purposes.

The cost of a false reject is high in VIS and US-VISIT for the
individual, who is applying for entry or a visa, as he is potentially
faced with wasted travel expenses and anguish over being
unrightfully rejected, or the border control will have to employ
special second line procedures to verify the individuals identity
claim through other means if at all possible. On the other side, the
authorities may fail to identify an individual who is placed in a
watch list or is a known visa shopper with potential negative
economic or human consequences.
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In India, the Unique Identification Authority of India (UIDAI) is
managing the Unique Identification number (UID). The 102.5
million UID had been issued by the end of the year 2011 [8] and
UIDAI expect 600 million enrolled by 2014 [9]. The goal of the
UIDAI is to issue a UID for all Indian residents and thus enable
financial inclusion for particularly the rural areas. It is estimated
that 40% of Indian citizens in rural areas do not have a bank
account and are thus excluded from large parts of society [10].
The UIDAI has faced the challenge of including individuals who
work extensively with manual labour that usually leads to worn
down and eventually damaged fingerprint patterns of particularly
low quality.

For the UID the cost for the individual is high as the success of a
bank transaction or any interaction with government officials is
dependent on successfully proving an identity claim. Due to the
risks exposed by falsely rejecting or accepting a biometric claim,
quality control measures must be implemented in any biometric
system.

The rest of the paper is organised as follows: Section 2 discusses
biometric sample quality, Section 3 contains a detailed overview of
finger image quality features with algorithm descriptions, and an
evaluation in terms of error-reject curve (ERC), correlation and
area under curve (AUC) is found in Section 4. Concluding
remarks are found in Section 5.

2 Biometric sample quality

2.1 Components of sample quality

The first component of a biometric system is the capture subsystem,
which acquires biometric characteristics. All subsystems operate and
depend on the successful acquisition of a biometric sample; hence
the acquisition influences all parts of the biometric system.
Consequently, it is important to specify requirements for the
biometric sample in order to ensure that a sufficient amount of
information is available. In the biometric terminology, these
requirements are conveyed by the concept of biometric sample
quality.

There are different aspects of quality, and one effort to specify
those is represented through the International Standard ISO/IEC
29794-1 where three aspects of quality are identified [11]:

† Character of a sample is the quality attributable to the inherent
features of the source from which the biometric sample is derived.
For example a scarred finger has a poor character.
† Fidelity of a sample is the quality that describes the degree of
similarity between the biometric sample and its source. A sensor
with low spatial resolution typically results in a low fidelity sample.
† Utility of a sample refers to the predicted impact of an individual
sample to the overall performance of the biometric system. It is
dependent on both the character as well as the fidelity of the sample.

It is the utility that is of most interest as it is the objective measure
for a biometric sample and directly relates the influence of character
and fidelity to expected biometric performance. As an objective
measure it has the advantage that the utility derived is fully
defined by a set of reproducible algorithms and thus it is possible
to trace how a particular sample were assigned a given utility.

For the scope of the definition sample quality assessment features
and their evaluation it is essential to correlate the predicted with the
observed utility. This relationship is depicted in Fig. 1.

Current efforts on standardisingfingerprint image quality algorithms
are carried out by International Organisation for Standardisation/
International Electrotechnical Commission (ISO/IEC), subcommittee
37, working group 3. The efforts will result in an update to 29794-4
Biometric sample quality – Part 4: Finger image data.

2.2 Influence of capture device technology

There exists a diverse set of capture device technologies each with
different properties some of which may negatively or positively
affect the recognition error. International Standard ISO/IEC
19794-4:2011 [12] lists a wide range of different sensor
technologies, and with each technology exists some limitation with
regard to sensor surface area and resolution.

The influence of the capture surface area on recognition accuracy
has been addressed in the literature where it has been found that the
equal error rate increases as the sensor size decreases [13, 14]. The
more general problem of recognition errors due to different sensor
technologies used for probe and reference samples is discussed by
Ross and Jain [15] who found that there is a strong need for
sensor independent algorithms, in particular with regard to
matching algorithms.

2.3 Influence of user behaviour and skin condition

User interaction with the acquisition device is another source of
recognition error, e.g. placing only the fingertip or side of the
finger on the sensor surface is likely to provide insufficient
information for the comparator, while pressing the finger too hard
on the sensing surface causes elastic deformations, which may
exceed compensation capabilities of the feature extraction or
matching subsystems. The impact of force on measured image
quality and minutia count is addressed by Kukula et al. [16].

Degradations in measured quality are expected for certain fingerprint
skin conditions [17]. Skin conditions are likely to change due to
environmental factors such as temperature and moisture levels, as
well as based on users profession (e.g. manual labour or office
work). Moreover, it can be observed that specifically in Western
cultures there is an increasing number of individuals that suffer from
dermatological diseases, that have a direct temporal or persistent
impact on the fingerprint pattern. Examples for such diseases are
atopic eczema, hyperceratotic eczema and thromboangitis. The skin
condition for persons aged 62 and above is generally less moist than
that of persons aged 18–25 and the former group generally receives
lower quality scores than the latter [18].

2.4 Application areas of quality

Quality assessment can provide real-time actionable feedback at the
capture level providing useful information that can lead to
recommendations for the re-capture process and thus eventually to a
higher quality of captured finger images and consequently increased
biometric performance over systems not using quality control.

Further quality survey statistics are helpful in system monitoring
to assess the performance of individual capture stations or in the
evaluation of capture station operators. Distributed enrolment

Fig. 1 Quality scores define predicted utility that should correlate with observed utility derived from comparison scores
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systems that operate, e.g. with public–private partnership can be
supported by incorporating the quality statistics as one of the
criteria, when computing the enrolment fee for the station
operator. Measurements over time can also point to systematic or
system wide degradation of capture devices as they age and device
components such as light emitting diode deteriorate.

Modern biometric system architectures like the UIDAI operate with
multiple biometric feature extractors and comparison subsystems and
apply load balancing between these background components. With
conditional processing of biometric samples of low quality may be
sent to a feature extractor that is particularly robust to low quality,
but is much slower than the normal feature extractor.

Full-reference and no-reference image quality assessment
algorithms have proven useful in the context of fake biometric
detection, i.e. the detection of artefacts used in active subversion
of a biometric system. An extensive review of the application of
this type of image quality measures to perform such detection is
addressed in depth by Galbally et al. [19].

2.5 Measuring biometric performance

2.5.1 Overview: Aspects of biometric quality must be expressed
in an objective manner to ensure that performance can be measured
and compared between different systems.

Tabassi et al. [2] proposed with National Institute of Standards
and Technology (NIST) Fingerprint Image Quality (NFIQ) an
approach for objective performance assessment based on a
measure of the distance between the genuine and imposter
comparison score distributions for a given sample; well separated
distributions imply that the likelihood of false accept or false reject
is low and that it increases with greater overlap between the
distributions. This approach is generalised in ISO/IEC
29794-1:2009 [11] which requires that the quality score output by
a biometric quality assessment algorithm conveys the predicted
utility of the biometric sample. The method suggested for
determining the utility of a sample is similar to the one used in
NFIQ, i.e. the utility is estimated from the distance between the
observed distributions of the sample’s comparison scores.

2.5.2 Utility: While no specific method is mandated to derive the
utility of a sample Annex A of ISO/IEC 29794-1 [20] suggests that
the utility value of a sample may be computed as follows.

Given a set of comparison scores computed using a single
comparator the utility of a sample j from subject i is

utilityui =
mmated

i,u − mnon−mated
i,u

smated
i,u + snon−mated

i,u
(1)

where mmated
(i,u) and mnon−mated

(i,u) are, respectively, the mean of the
genuine and imposter comparison score distributions of sample j
from subject i and smated

(i,u) and snon−mated
(i,u) are the standard deviations

of, respectively, the genuine and imposter comparison score
distributions. Such a utility value can be computed for each
comparator using the comparison score provided by that
comparator. Methods for fusing utility values exist and a more
detailed description of the entire utility computation process can
be found in the annex of ISO/IEC 29794-1:2009 [11].

The Spearman’s rank correlation coefficient is used in this work as
a non-parametric measure of statistical dependence between the
quality score and utility.

2.5.3 Error-reject curve: Grother and Tabassi [21] introduced
the ERC as a method of assessing the predictive performance of a
quality algorithm in terms of false non-match rate (FNMR). We
adopt the equations for the one-dimensional case (1D), i.e. where
a rejection is driven by the minimum quality qi of the qualities in
a pair of samples. In particular, the combination function H is
chosen as the min function

qi = H q(1)i , q(2)i

( )
= min q(1)i , q(2)i

( )
(2)

Using the combination function in (2) we form the set R(u)
containing the pairwise minima less than u

R(u) = j:H q(1)j , q(2)j

( )
, u

{ }
(3)

We then use R(u) to exclude comparison scores starting with the
lowest of the pairwise minimums up to some fixed threshold t
which corresponds to a FNMR of interest, f. The threshold is
obtained using the empirical cumulative distribution function of
the comparison scores

t = M−1(1− f ) (4)

FNMR(t, u) =
{s jj: s jj ≤ t, j ! R(u)}
∣∣∣

∣∣∣

{s jj: s jj ≤ 1}
∣∣∣

∣∣∣
(5)

The method models the operational case in which samples are
rejected due to low quality. The ERC is determined by
progressively excluding a fraction of samples and recalculating the
FNMR as the proportion of non-excluded scores which are below
the threshold. For good algorithms which output quality scores
that are monotonically related to the comparison score the
desirable result is that the FNMR decreases quickly with the
fraction of samples rejected.

To quantify the decrease in FNMR we propose two metrics which
consider the AUC of the ERC with respect to the theoretical best case
where the decrease in FNMR equals the fraction of samples rejected
due to quality. The first metric, herc

auc (6) is expressed as the AUC of
the ERC subtracted the area under theoretical best

herc
auc =

∫1

0
ERC− area under theoretical best (6)

The second metric herc
pauc20 (7) is similar to herc

auc with the modification
that only the first 20% the ERC is considered

herc
pauc20 =

∫0.2

0
ERC− area under theoretical best (7)

2.6 Quality in large-scale biometric systems

When large biometric systems are analysed certain properties will
become apparent due to the scale of the operative system. Due to
the wide availability of solutions and systems providing a range of
possible performance, usability and conformance constellations
German Federal Office for Information Security (BSI) have
provided technical guidelines for the usage of biometrics in the
public sector [22].

The influence of fingerprint quality on biometric performance has
been studied in detail by Wilson et al. in their 2004 study on
recognition accuracy for US-VISIT [1]. The primary dataset in the
study is based on 274,000 right index finger pairs sourced from
the Mexican visa program. They show that a proprietary quality
measure from Cogent Systems (now 3M [23]) with eight quality
bins is a good rank statistic with all eight levels ordered such that
the error rate of fingerprints with level 1 is always lower than any
other quality level, and the error rate of quality level 2 is always
lower than the next six quality levels and so on. The same
property is demonstrated for the NFIQ, which categorises finger
images into five quality bins. Due to the open source availability
of NFIQ this software became widely adopted since its release in
2004. More details on NFIQ will be provided in Section 3.2.

On the two comparators tested they show that the performance
degrades consistently with lower quality levels for both the NFIQ
and Cogent quality algorithms. An interesting aspect shown in the
study is that at quality levels 1–4 the true accept rate is at least
98.2% at a false accept rate of 1.0% for the comparator used in
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US-VISIT Automated Biometric Identification System (IDENT). For
quality levels 5–8 the true accept rate further degrades from 95.2 to
53.6%. The implication is that half the quality scale is used for finger
images that are highly likely to be correctly matched while much less
fidelity is given to the remaining more problematic finger images.

Finally, it is concluded that finger image quality is the most critical
single factor impacting the performance of fingerprint recognition
systems. Wilson et al. recommend that image quality should be the
first place to improve if the performance of an otherwise reasonably
engineered system is poor. One step towards better image quality in
biometric systems is to detect when an image is of insufficient
quality such that a new capture can be obtained (i.e. actionable quality).

The first study on finger image quality in India was performed by
Vatsa et al. in a UIDAI case study analysing fingerprints of Indian
population using image quality [24]. Using NFIQ, three datasets
are analysed with the objective of determining quality aspects of
fingerprints obtained from urban and rural population. In their
analysis, it is shown that for the ten-print dataset collected among
20,000 individuals in the rural population, 83% of the 200,000
finger images result in a NFIQ score of 1 or 2, indicating good or
very good quality. This is unexpected and the authors do show
cases where NFIQ has incorrectly assessed the quality of two very
poor quality images as being quality scores 1 and 2, respectively.
This indicates that NFIQ does misclassify finger image quality
classes under some circumstances. Using a much smaller dataset
of 1620 images in a prepared dataset with finger images from 27
urban individuals and 81 rural individuals an identification
accuracy of 90 and 64%, respectively, was achieved.

It is observed that the finger image quality values reported by
NFIQ are highly correlated with comparison scores, which
supports the findings by Wilson et al. on quality and biometric
performance being closely related.

3 Review of finger image quality assessment
features

3.1 Overview

In finger image quality analysis, it is important to consider that the
finger image can be viewed at a high level (global finger image
quality) and a local level (local finger image quality). Analysing
the finger image at the global level can provide a fast assessment,
but with the tradeoff that local context is neglected. The quality
score derived from a global quality feature does reflect the case
where, e.g. a part of the fingerprint is blurry or missing, but it
does not provide information about the spatial location of the
defect. This is in contrast to quality features operating on the local

level where spatial location is preserved yielding a more nuanced
assessment, and potentially providing important information to the
minutiae extractor in the form of a quality vector representing a
quality map of the finger image. The common approach to
compute local level information is to subdivide the image into
blocks as illustrated in Fig. 2. This figure introduces the block and
pixel indexing used in the quality feature definitions in Sections
3.4 and 3.5. A taxonomy of finger image quality algorithms has
been proposed by Alonso-Fernandez et al. [25] where three classes
of quality algorithms are described in the context of existing
algorithms, namely those which are (a) based on local features; (b)
based on global features; and (c) those based on classifiers.

Several fingerprint image quality assessment algorithms have been
proposed in the literature, in particular, the classifier-based NFIQ
algorithm is used extensively in industry and forms the quality
control aspect in operational biometric systems. An extensive
review of finger image quality algorithms has been performed by
Alonso-Fernandez et al. [26], and more recently by Bharadwaj
et al. [27].

The source code for the quality features specified in Sections 3.4
and 3.5 are made available online [28].

3.2 NFIQ algorithm

The NIST developed in 2004 the NFIQ algorithm and with it a new
definition of quality of fingerprint impressions and algorithms for
measuring quality was proposed. The work at the time was the
first open algorithm for an assessment of finger image quality,
which is a predictor of comparator performance [2].

The NFIQ image features are derived from an interpretation of a
fingerprint quality map and minutia counts. The localised quality
of the fingerprint is measured by computing four quality maps; a
direction map, a low contrast map, a low ridge flow map and a
high curvature map. For the local analysis, the image is divided
into a grid of blocks, where all pixels within a block are assigned
the same value derived from all pixels in the block. The direction
map represents the local ridge flow as derived through application
of the discrete Fourier transform (DFT). The low contrast map
separates the background from the fingerprint and detects areas
which are blurry. The low flow map is derived from the direction
map by assessing if the block has a dominant ridge flow. If no
dominant ridge flow exists within a block then minutiae in that
block are assumed to be unreliable. The high curvature map is
derived from the direction map as the coherence between the
directions of one block relative to its eight neighbouring blocks
giving an indication of the directional stability in a region. The
four maps are fused into one single quality map describing the
block wise quality of the finger image. The quality blocks and
minutiae from the fingerprint are used to compose a quality feature
vector which is used as input for a neural network (i.e. a
multi-layer perceptron) which outputs a corresponding quality
number representing the expected utility of the given sample.

3.3 Improvements to NFIQ

Since its development, NFIQ has been analysed and areas of
improvement have been identified by Merkle et al. [29]. Herein, a
two-step process is proposed where the optimisation of NFIQ is
split into classification and prediction parts which improve NFIQ
in the points of fingerprint data basis, similarity score statistic,
image feature selection, and neural network.

Some of these findings are being applied in the developments of
NIST Fingerprint Image Quality 2 (NFIQ 2) [30] which is the
evolution of NFIQ initiated by NIST and BSI.

3.4 Local finger image quality

3.4.1 Overview: Local finger image quality assessment
algorithms operate on local regions of the image where each local
region (i.e. an image block) contains at least two ridge lines. For
images with 500 pixels per inch a ridge and valley pair are 8–12

Fig. 2 Illustration of block and pixel indexing within an image I with
dimensions Iw, Ih. Shown is the pixel I(1,1), the block V(1,1), with
dimensions Vw, V h
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pixels wide [31] and consequently, to cover two ridge lines a local
region must be at least 24 pixels in either dimension.

Valid for all local finger image quality metrics is that they each
assign a quality value to each local region, which is aggregated in
a specified manner to yield a global quality score for the finger
image. It is recommended that the quality algorithm returns a map
or histogram of the quality values assigned to each local region.
At a later stage, such multiple quality maps can be combined to
provide a robust local quality value.

In the remaining of this section state-of-the-art of local finger
image quality features are reviewed and detailed algorithm
descriptions are provided. Default values provided for the
variables are based on an empirical study and shall represent a
good balance between computational complexity and accuracy (i.e.
utility correlation).

In the following sections, a common input image will be used as an
example to illustrate the result of specific points in the specified
algorithms. Several of the algorithms perform the same initial steps
which are shown in Fig. 3. The input image I shown in Fig. 3a is
image 8_5.bmp from FVC2004 DB1 [32]. For algorithms operating
in a block-wise manner, the image is subdivided into blocks
according to the overlay grid shown in Fig. 3b. The block V(10,7) is
used as example in local processing and is marked up using a bold
line. Fig. 3c shows an enlarged view of V(10,7) and Fig. 3d shows
V(10,7) rotated according to ridge orientation its dominant ridge
orientation as determined using (17).

Computing the block orientation from gradients. From a single
block representing a local region of a fingerprint image, the
dominant ridge flow orientation is determined by computing the
gradient information and then determines the orientation of the
principal variation axis.

The numerical gradient of the block is determined using finite
central difference for all interior pixels in the x-direction (8) and
the y-direction (9)

f x =
I(x+ 1, y)− I(x− 1, y)

2
(8)

f y =
I(x, y+ 1)− I(x, y− 1)

2
(9)

With f x and f y are the principal axes of variation of V is determined
analytically using the sine and cosine doubled angles determined
from the arithmetic means of the image gradient covariances (17)

a = f x
2 (10)

b = f y
2 (11)

c = f x · f y (12)

C = a c
c b

[ ]
(13)

d =
)))))))))))))))
c2 + (a− b)2

√
+ e (14)

sin 2 = c
d

(15)

cos 2 = a− b
d

(16)

angle(V ) = a tan 2( sin 2, cos 2)
2

(17)

3.4.2 Frequency domain analysis (FDA): The FDA algorithm
(see Fig. 4) operates in a block-wise manner. A 1D signature of the
ridge–valley structure is extracted and the DFT is computed on the
signature to determine the frequency of the sinusoid following the
ridge–valley structure [20, 33].

The value of Qlocal
FDA is undefined if Fmax = 1 or Fmax = A(end) as

both A(0) and A(end + 1) are not accessing valid indices.
Workaround in that case is to set Qlocal

FDA = 1. Despite International
Organisation for Standardisation (ISO) recommendation [11] of a
high quality value indicating a high quality, this is not the case for
FDA as specified in ISO/IEC TR 29794-4:2010 [20].

A visual overview of the algorithm outputs is depicted in Fig. 5
where Fig. 5a shows V cropped to contain central area of rotated
V; Fig. 5b shows the ridge-valley profile T; Fig. 5c shows the
DFT of T after the first component has been removed; and Fig. 5d
shows Qlocal

FDA for each V in I.

Ridge–valley signature. The ridge–valley signature is a projection of
the mean values of the local region along the y-axis onto a 1D vector.
This effectively gives an approximated representation of the
fundamental periodicity within the local region. The signature is
computed as

T (x) = 1
V h

∑Vh

k=1

I(x, k) (18)

Computing the local FDA quality score. The local FDA quality
score, Qlocal

FDA is computed as

Qlocal
FDA = A(Fmax)+ C(A(Fmax − 1)+ A(Fmax + 1))

∑N/2
F=1 A(F)

(19)

Fig. 3 Input image used in illustrative examples of the processing of quality

a Input image
b Subdivision into blocks with example block V(10,7) marked
c Enlarged view of V(10,7)
d V(10,7) rotated according to eq. (17)

Fig. 4 FDA algorithm
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where C = 0.3 according to the definition appearing in ISO/IEC TR
29794-4:2010. The effect of the constant is to retain an attenuated
amplitude of the frequency bands immediately surrounding Fmax

Computing the final FDA quality score. The final quality score is
computed as the mean of local quality scores

QFDA = 1
N ∗M

∑N

i=1

∑M

j=1

Qlocal
FDA(i, j) (20)

3.4.3 Gabor (GAB) quality: The GAB quality feature [34]
operates on a per-pixel basis by calculating the standard deviation
of the Gabor filter bank responses. The size of the filter bank is
used to determine a number of filters oriented evenly across the
half circle. The strength of the response at a given location
corresponds to the agreement between filter orientation and
frequency in the location neighbourhood. For areas in the
fingerprint image with a regular ridge–valley pattern there will be
a high response from one or a few filters likely neighboured
orientations. In areas containing background or unclear ridge–
valley structure the Gabor response of all orientations will be low
and constant.

The Gabor quality feature is resolution dependent (see Fig. 6).
A visual overview of the algorithm outputs is depicted in Fig. 7

where Fig. 7a shows the Î , Figs. 7b–e and f–i depict, respectively,
the real and imaginary parts of the Gabor filter at four orientations.
The filter response is depicted in Figs. 7j–m and the corresponding
Gaussian filtered response is depicted in Figs. 7n–q. Standard
deviation of the Gaussian filtered responses is shown in Fig. 7r.

3.4.4 Gabor filter: The general form of the complex 2D Gabor
filter hcx in the spatial domain is given by

hcx(x, y; f , u, sx, sy) = exp − 1
2

x2u
s2
x
+ y2u

s2
y

( )

exp j2pf xu
( )

( )

(21)

where

xu = x sin u+ y cos u (22)

yu = x cos u− y sin u (23)

and f is the frequency (cycles/pixel) of the sinusoidal plane wave
along the orientation θ. The size of the Gaussian smoothing
window is determined by σx, σy. The filter bank size n is used to
compute the differently oriented Gabor filters composing the filter
bank. Computing θ given n is done as

u = p
k − 1
n

, k = 1, . . . , n (24)

3.4.5 Gabor-Shen (GSH) quality: GSH [35] is a Gabor-based
feature separating blocks into two classes: good and bad. The
scalar quality is the ratio between the number of foreground blocks
and the number of foreground blocks marked as poor.

The filter response of each Gabor kernel in the filter bank
is computed on the pixels in each block and a standard
deviation is computed on the responses. Using thresholding each
block is determined to be foreground, background, and poor
or good quality. The algorithm is outlined in Algorithm 3 (see
Fig. 8).

The GSH quality feature is resolution dependent. Shen et al.
suggest σx = σy = 4, f = 0.12, n = 8, b = 30 and that Tb and Tq are
empirically determined according to dataset. We have found
that setting Tb = 1 and Tq = 2 to yield good results across several
datasets.

A visual overview of the algorithm outputs is depicted in Fig. 9
where Figs. 9a–d and e–h depict, respectively, the real and
imaginary parts of the Gabor filter at four orientations. The filter
response is depicted in Figs. 9i–l and the standard deviation of the
responses is shown in Fig. 9m. The mean of standard deviations in
each block is shown in Fig. 9n indicating in light grey-scale
values those image regions, where good quality is assumed.
Blocks marked as foreground are shown in Fig. 9o and blocks
marked as poor are shown in Fig. 9p.

Fig. 5 Processing steps of FDA quality algorithm

a Central area of input block
b Ridge-valley profile
c DFT of ridge-valley profile
d Local qualities

Fig. 6 GAB algorithm
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3.4.6 Local clarity score (LCS): LCS [20, 36] computes the
block-wise clarity of ridges and valleys by applying linear
regression to determine a grey-level threshold, classifying pixels as

ridge or valley. A ratio of misclassified pixels is determined by
comparing with the normalised ridge and valley widths of that
block (see Fig. 10).

Fig. 7 Processing steps of GAB algorithm

a Input image filtered by subtraction of Gaussian convolution

b–e Real part of Gabor filter at 0p
4
,
1p
4
,
2p
4
,
3p
4

f–i Imaginary part of Gabor filter at orientations
0p
4
,
1p
4
,
2p
4
,
3p
4

j–m Magnitude of filter responses at each orientation
n–q Gaussian convolution of magnitudes
r Standard deviation of per pixel magnitude
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Particular regions inherent in a fingerprint will negatively affect
QLCS. For example, ridge endings and bifurcations or areas with
high curvature such as those commonly found in the vicinity of
core and delta points.

A visual overview of the algorithm outputs is depicted in Fig. 11a
crop of the current block shown in Fig. 11a with the average profile
depicted in Fig. 11b. The grey-scale values of the profile and the
regression line determined using linear regression is shown in
Fig. 11c, with the corresponding binarisation into ridge (black) and
valley (white) in Fig. 11d. Figs. 11e–g show, respectively, pixels in

the input block determined to be ridge using threshold; grey-level
threshold for ridges across the block shown; pixels above threshold
marked in white. Similarly, for valleys in Figs. 11h–j. The LCS for
each block is visualised in Fig. 11k with white being maximum clarity.

Determining the proportion of misclassified pixels. For a block V
there are vT pixels in the valley region and vB pixels in the valley
region with intensity lower than a threshold DT. Similarly there
are rT pixels in the ridge region and rB pixels in the ridge region
with intensity lower than a threshold DT. α and β are expressions
of these ratios

a = vB
vT

(25)

b = rB
rT

(26)

Determining the normalised ridge and valley widths. The normalised
valley width !W v and the normalised ridge width !W r are determined as

!W v =
Wv

(S/125)Wmax (27)

Fig. 8 GSH algorithm

Fig. 9 Processing steps of GSH algorithm

a–d Real part of oriented Gabor filters
e–h Imaginary part of oriented Gabor filters
i–l Magnitude of responses at each orientation
m Standard deviation of filter responses
n Quality level blocks marked on grey scale with white indicating highest quality
o Foreground blocks marked in white
p Bad quality blocks marked in white
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!W r =
Wr

(S/125)Wmax (28)

where S is the sensor resolution in dpi,Wmax is the estimated ridge or
valley width for an image with 125 dpi resolution, andWv andWr are

the observed valley and ridge widths. According to [31],Wmax = 5 is
reasonable for 125 dpi resolution.For 500 dpi resolution, (27) and
(28) may be expressed as

Ŵv =
Wv

20
(29)

Ŵr =
Wr

20
(30)

Computing the LCS. The final quality score QLCS is computed using
the average values of α and β in valid ridge and valley regions
(see (31))

where W nmin
r and W nmin

v are the minimum values for the normalised
ridge and valley widths, and W nmax

v and W nmax
v are the maximum

values for the normalised ridge and valley widths.

Fig. 10 LCS algorithm

Fig. 11 Processing steps of LCS algorithm

a Crop of current block
b Average profile of block
c Average block profile with linear regression line
d Binarisation mask with ridge and valley regions based on regression line
e Pixels determined to be ridge based on mask
f Threshold across the region
g Pixels misclassified as valley based on the threshold
h–j same as e–g but for valley region
k Local clarity scores

Fig. 12 OFL algorithm

IET Biom., pp. 1–18
9This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



Computing the quality score. With N*M local orientation quality
score blocks the global local clarity score is computed as

QLCS = 1
N∗M

∑N

i=1

∑M

j=1

Qlocal
LCS (i, j) (32)

.
3.4.7 Orientation flow (OFL): OFL [20, 36] is a measure of
ridge flow continuity which is based on the absolute orientation
difference between a block and its neighbouring blocks (see Fig. 12).

In ISO/IEC TR 29794-4:2010 [20], the parameter θmin is a
constant such that the angular tolerance is 8° (θmin = 8°). The local
orientation quality score in this case is assigned such that
Qlocal

OFL(i, j) = 100 when the local quality is the highest. This is the
opposite behaviour of the ISO/IEC TR 29794-4:2010 definition
where Qlocal

OFL(i, j) = 0 when the local quality is the highest.
A visual overview of the algorithm outputs is depicted in Fig. 13

where a line marking the normal to the ridge line orientation in
Fig. 13a; the blockwise dominant orientations are depicted in
Fig. 13b and the orientation differences are shown in Fig. 13c; and
the local quality scores are shown in Fig. 13d.

Absolute orientation difference. The ridge flow is determined as a
measure of the absolute difference between a block and its
neighbouring blocks. The absolute difference for block V (i, j) is

D(i, j) =
∑1

m=−1

∑1
n=−1 |V (i, j)− V (i− m, j − n)|

8
(33)

Local orientation quality score. The local orientation quality score
Qlocal

OFL(i, j) for the block orientation difference D(i, j) is determined as

Qlocal
OFL(i, j) =

D(i, j)− umin
90 deg−umin

, D(i, j) . umin

0 , otherwise




 (34)

where θmin is a threshold for the minimum angle difference to be
considered as significant.
Global orientation quality score.With N*M local orientation quality
score blocks the global orientation quality score is computed as

QOFL = 1− 1
N∗M

∑N

i=1

∑M

j=1

Qlocal
OFL(i, j) (35)

3.4.8 Orientation certainty level (OCL): OFL quality (OCL)
(see Fig. 14) [20, 37] is a measure of the strength of the energy
concentration along the dominant ridge flow orientation. The
feature operates in a block-wise manner.

The computation of OCL presented here deviates from ISO/IEC
29794-4:2010 [20] in that we subtract the ratio between the
eigenvalues from 1 such that QOCL = 0 reflects the lowest quality
and QOCL = 1 the highest quality.

A visual overview of the algorithm outputs is depicted in Fig. 15
where the ratio of the eigenvalues is shown in Fig. 15a as an ellipse
and the local qualities are depicted in Fig. 15b where higher intensity
indicates higher Qlocal

OCL score.

Computing the eigenvalues and local orientation certainty. From the
covariance matrix C the eigenvalues lmin and lmax are computed as

lmin =
a+ b−

))))))))))))))))
(a− b)2 + 4c2

√

2
(36)

lmax =
a+ b+

))))))))))))))))
(a− b)2 + 4c2

√

2
(37)

Fig. 13 Processing steps of OFL algorithm

a Line marking the normal to the ridgeline orientation
b Local orientations
c Orientation differences
d Local quality scores

Fig. 14 OCL algorithm

Fig. 15 Processing steps of OCL algorithm

a Current block with ratio between eigen values marked as ellipse
b Local quality scores

Qlocal
LCS = 1− a+ b

2

( )
, W nmin

v , !W v , W nmax
v

( )
W nmin

r , !Wr , W nmax
r

( )

0 , otherwise




 (31)
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this yields a local orientation certainty level Qlocal
OCL

Qlocal
OCL = 1− lmin

lmax
(38)

which is a ratio in the range 0 to 1, respectively, the lowest and
highest orientation certainty levels.
Computing the quality score. The quality score QOCL is computed as
the mean of local scores Qlocal

OCL using (38) where a higher QOCL score
indicates higher quality

QOCL = 1
N∗M

∑N

i=1

∑M

j=1

Qlocal
OCL(i, j) (39)

3.4.9 Ridge–valley uniformity (RVU): RVU is a measure of the
consistency of the ridge and valley widths (see Fig. 16) [20, 37]. The

Fig. 16 RVU algorithm

Fig. 17 Processing steps of RVU algorithm

a Crop of current block
b Average profile of block
c Average block profile with linear regression line
d Local quality scores as the standard deviation of local ridge to valley ratios

Fig. 18 Processing steps of RPS algorithm

a Blackman filtered input image
b Log transformed Fourier spectrum of filtered input
c Transform to polar coordinates with dashed lines indicating frequency band of interest
d Crop of frequency band of interest
e Magnitude in frequency band of interest
f Power in sub bands in the frequency of interest
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expectation for a finger image with clear ridge and valley separation
is that the ratio between ridge and valley widths remains fairly
constant and thus the standard deviation of ratios is used as an
indication of the sample quality. The RVU quality feature is
resolution dependent.

A visual overview of the algorithm outputs is depicted in Fig. 17
where a crop of the valid area of the current block is depicted in
Fig. 17a; the ridge–valley signature is shown in Fig. 17b and the
result of linear regression on the intensities is depicted in Fig. 17c.
The resulting standard deviation of local ratios is shown in Fig. 17d.

3.5 Global finger image quality

3.5.1 Radial power spectrum (RPS): RPS [20, 38] is a
measure of maximal signal power in a defined frequency band of
the global radial Fourier spectrum. Ridges can be locally
approximated by means of a single sine wave, hence high energy
concentration in a narrow frequency band corresponds to
consistent ridge structures.

A visual overview of the algorithm outputs is depicted in Fig. 18
where the input image convolved with a Blackman filter [Algorithm
8 (Fig. 19), line 1] is shown in Fig. 18a. The log transformed
spectrum of the DFT is shown in Fig. 18b and the conversion to
polar coordinates in Fig. 18c with lines in upper part indicating
the frequency band of interest. The extracted band of frequencies
is shown in Fig. 18d, and the power is shown in Fig. 18e and the
power of binned frequencies is shown in Fig. 18f.

2D Fourier transform. The 2D DFT F(u, v) = F I(x, y)
{ }

is

F(u, v) = 1
IhIw

∑Iw−1

x=0

∑Ih−1

y=0

I(x, y) exp −j2p
ux
Iw

+ vy
Ih

( )( )
(40)

The magnitude of F(u, v) is computed as

|F(u, v)| =
))))))))))))))))))))))))))))
<(F(u, v))2 + ℑ(F(u, v))2

√
(41)

Magnitude of frequency bands polar coordinates. The magnitude of
the annular band between r and r + δr in the polar Fourier spectrum F
(α, r) is computed as

J (r) =
∑

a

F(a, r) (42)

Determine quality score. The quality feature QRPS is found as

QRPS = max |J (r)| (43)

3.5.2 Image mean (MU): The MU quality feature is the mean
value of the input image (see Fig. 20).

3.5.3 Image standard deviation (SIG): The SIG quality
feature is the standard deviation of the input image (see Fig. 21).

4 Performance evaluation

For the performance evaluation, we have chosen to assess the
predictive performance of NFIQ and the quality features specified
in Sections 3.4 and 3.5.

We base our results on finger image data from Fingerprint
Verification Competition 2004 (FVC 2004) [32], Fingerprint
Verification Competition 2006 (FVC 2006) [39], MCYT
Fingerprint 330 (MCYT-330) [40], and Wet-Dry Dataset 2

Fig. 19 RPS algorithm

Fig. 21 SIG algorithm

Table 1 Datasets used for performance evaluation of quality algorithms

Database FVC2004
DB1 [32]

FVC2006
DB2A [39]

MCYT330
DP [40]

WDSET02
[41]

Sensor optical
(single)

optical
(single)

optical
(single)

optical
(multiple)

Subjects 30 330 33
Fingers 4 140 10 10
Impressions 8 12 12 20
Total images 880 1680 39,600 6600
Genuine 6160 18,480 435,600 125,400
Imposter 17,600 840,000 19,800,000 660,000

Fig. 22 DET curves for datasets FVC2004 DB1, FVC2006 DB2A,
MCYT330 DP, and WDSET02 using comparison scores from providers A,
B, and CFig. 20 MU algorithm
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(WDSET02) [41] databases which are summarised in Section 4. For
the dataset WDSET02 5 different capture devices were used and the
capture protocol specified four finger surface conditions: no
treatment with capture as the subject arrives; application of an
alcohol based solution to dry the skin surface; application of
hand-moisturiser; and finally soaking in water. FVC2004 DB1 and
FVC2006 DB2A were captured in a supervised manner were
subjects were instructed to perform various actions which result in
various degradations such as elastic deformation and uneven
pressure. Samples in MCYT330 DP were captured using the three
levels finger placement requirements on the sensor: relaxed, but
under supervision by operator; placement within specified

rectangle; and high level of control where one core and/or delta
must fall within a specified rectangle. The datasets combined
provide a total of 48,760 fingerprint image samples captured using
optical sensors.

For each dataset, comparison scores are computed using three
commercial state-of-the-art minutiae-based comparison systems
denoted as A, B, and C as agreements prohibit us from revealing
the names. All genuine comparisons were made and imposter
scores were determined by randomly selecting a set of probes from
other subjects (see Section 4) and compared with the reference
template. In the cases where a provider failed to either compute a
template or a comparison score we have set the comparison score to 0.

Fig. 23 Spearman correlation table and scatter plots of quality features and utilities for each dataset

a FVC2004 DB1
b FVC2006 DB2A
c MCYT330 DP
d WDSET02
The upper half shows the Spearman correlation between two variables, the lower half depicts a scatter plot of the two variables and the diagonal contains the name of the variable in that
row and column
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We evaluate and rank the quality features according to their ERC
characteristics and Spearman correlation with utility values as
computed in (1). In the case of ERC, we focus on the decrease
in FNMR achieved when rejecting the lowest 20% quality
samples as rejecting more than 1 in 5 samples due to quality is
unlikely to be acceptable in an operational system (see Section
2.5.3) (see Table 1).

For features QFDA, QLCS, QOCL, QOFL, QRVU the quality values
were computed on the image foreground as determined by
segmentation based on local standard deviation image with a block
size of 32 by 32 pixels and a threshold of 0.1 with ridgesegment.m
method [42].

4.1 Detection error tradeoff (DET)

To assess the characteristics of the datasets and the biometric feature
extractors and comparators a benchmark is performed by computing
the DET on each dataset. The DET plots are shown in Fig. 22. It is
observed that at a fixed false match rate at 10−4 the FNMR shifts over
several orders of magnitude depending on the dataset used. It is
observed that A is performing best across datasets, while C is the
worst performing. Further, providers perform the worst on
WDSET02 and the best on FVC2006 DB2A.

Providers perform the worst on WDSET02, one reason for this is
that the data collection protocol for that dataset included the capture
of soaking wet fingerprints which results in very poor quality
samples for some capture devices.

4.2 Feature correlations

Correlation of features has a significance when assessing which
features to include in a composite quality algorithm, i.e. one that
uses input from multiple quality algorithms to determine a scalar
quality value or a vector of multiple selected quality values for a
sample. In such case it is advisable to select features which
complement each other, i.e. they do not correlate with each other.

Correlation tables for quality values and utility computed on the
four datasets are shown in Fig. 23. The upper half shows the
Spearman correlation between two variables, the lower half depicts
a scatter plot of the two variables and the diagonal contains the
name of the variable in that row and column.

We note that the correlation between features is clearly dependent
on the dataset on which they were computed, e.g. consider the
correlation between FDA and MU, which is varying significantly
by being positively correlated (0.25) in FVC2004 DB1 and
WDSET02 (0.32), not correlated (0.00) in FVC2006 DB2A, and
negatively correlated (−0.23) in MCYT330 DP. The correlations
between the features and utility computed according to (1) for
each provider also reveals significant differences across datasets, e.
g. the correlations between NFIQ and each of A, B, and C are
−0.18, −0.15, and −0.17, respectively, for FVC2004 DB1, while
for WDSET02 the correlations with the same providers are −0.65,
−0.56, and −0.52. Similarly, for GAB we see major differences,
and in the case of B on MCYT330 DP there is a correlation of
−0.03, while it is 0.49 on WDSET02.

4.3 Error-reject curves

We determine the behaviour of quality features over the range of
quality values in relation to the FNMR using ERC (Section 2.5.3).
Ideally, when a sample is removed due to its computed quality
value, a corresponding decrease in FNMR occurs, i.e. the idealised
quality feature identifies exactly those samples which contribute to
FNMR and its behaviour in the ERC is that the resulting reduction
in FNMR occurs at the same rate as the rejection due to quality.
When a sample which did not cause a false non-match is removed
due to its quality level, it will result in an increase in the FNMR
which occurs because the FNMR is computed using the genuine
comparison scores of those samples remaining after samples have
been removed due to their inferior quality as determined be the
respective algorithm [see (5)].

For each feature and combination of dataset and comparison score
provider we computed the ERC, noting the herc

auc and herc
pauc20 as

computed according to (6) and (7). The resulting curves for the
MCYT330 DP dataset using provider A for comparison scores are
displayed in Fig. 24, where we have used two different values of f,
one f = 0.1 to simulate an operational case where the FNMR is
10%, and one with f = 0.01 where the FNMR is 1% [see (4)]. We
show, respectively, the first 15 and 1.5% of samples being rejected
due to computed quality value. The inlay shows the full ERC from
no samples removed to all samples removed. The resulting herc

auc
and herc

pauc20 computed from ERC for each case of f are summarised
in Tables 2 and 3.

All the presented features provide a wide range of possible quality
values, while NFIQ by design provides five quality levels. The ERC
shows that NFIQ is more robust than individual features as the
FNMR in the ERC is decreasing as comparisons containing
samples associated with the rejected quality level are removed.
Only in a single instance, the combination of WDSET02 and
provider B, do we note that NFIQ exhibits unexpected behaviour
where the FNMR is increasing. The cost of the relatively small
number of distinct quality levels is that one must always choose to
reject an entire level of quality, resulting in a rough step function
when then the fraction of samples rejected is plotted against the
resulting FNMR. This behaviour is visible in Fig. 24a where the
FNMR remains at 0.10 until around 3% of the samples are
rejected where after the FNMR drops to slightly more than 8%
and stays at that level until around 20% of the samples are rejected
and the FNMR is further reduced to around 4%.

Fig. 24 ERC for features on MCYT330 DP using A as basis for FNMR
computation with ERC starting, respectively, at

a 10% FNMR (f = 0.1)
b 1% (f = 0.01). See Tables 2 and 3 for a summary of each instance of f
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5 Conclusion

Fingerprint sample quality continues to play a large role in biometric
systems and the presented review and performance evaluation of
existing quality metrics has shown that the algorithms have
varying performance across dataset and comparison score vendor.
This considerably complicates the task of selecting a subset of
features which are suitable for a combined or aggregated quality
metric. Inter-feature Spearman correlation give indications as to
which features are overlapping with respect to the aspect of the
fingerprint they measure.

An important point to address in future research is how to best
combine quality features in a way which minimises the
dependence on individual comparison score providers, while
maintaining a sufficient predictive performance with respect to the
biometric performance.

The selection of quality features is further complicated by their
non-monotonic behaviour, i.e. the feature might only be indicative
of sample utility in a range of the values it produces, and it is not
guaranteed that a high quality value indicates higher biometric
performance across all ranges within the possible values. Using
herc
auc and herc

pauc20 as indicators for feature provides insights to the
behaviour of quality features throughout the quality values it
provides in the context of FNMR, however, it is clear from our
results that the ordering of the features using these indicators
changes depending on the chosen f parameter in the calculation of
ERC. With f = 0.01 and using herc

auc as selection criteria, we
conclude that GAB, LCS, and GSH provide consistent high
performance across the tested datasets, and that RPS, OFL, and
OCL appear sensitive to the dataset used.

Our results show that correlation with utility as computed using
the definitions by ISO/IEC is not indicative of the behaviour of the
quality feature when evaluated using ERC and our recommendation
is to apply feature correlations only in the context of identifying
potentially overlapping methods of quality measurements.

The quality features we have specified and evaluated are made
available to the community [28]. We anticipate that parameters in

the quality features can be tuned to achieve a higher performance
on specific datasets or a better generalisability when faced with
new datasets.
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OCL 0.007 0.002 0.004 0.001 0.004 0.002 0.013 0.002
NFIQ 0.007 0.002 0.005 0.002 0.003 0.001 0.004 0.002
MU 0.009 0.002 0.007 0.002 0.011 0.002 0.004 0.002
SIG 0.011 0.002 0.006 0.002 0.014 0.002 0.022 0.003
OFL 0.011 0.002 0.008 0.001 0.014 0.002 0.002 0.001
FDA 0.010 0.002 0.017 0.002 0.021 0.002 0.017 0.002
RVU 0.016 0.002 0.029 0.002 0.026 0.002 0.008 0.001

Table 2 Summary of AUC and PAUC (see (6) and (7)) for ERC plots of quality features on FVC2004 DB1, FVC2006 DB2A, MCYT330 DP, and WDSET02
computed using f = 0.1. The values marked in bold indicate the smallest AUC and PAUC for each data set

Feature FVC2004 DB1 FVC2006 DB2A MCYT330 DP WDSET02

herc
auc herc

pauc20 herc
auc herc

pauc20 herc
auc herc

pauc20 herc
auc herc

pauc20

GAB 0.068 0.014 0.023 0.010 0.026 0.009 0.017 0.008
LCS 0.072 0.014 0.046 0.010 0.036 0.011 0.023 0.010
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8 Appendix: ERCs for quality features

See Fig. 25.
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Fig. 25 ERCs for each feature on each dataset FVC2004 DB1, FVC2006 DB2A, MCYT330 DP, WDSET02 with each providers A, B, C, and f = 0.1

a FDA
b GAB
c GSH
d LCS
e MU
f NFIQ
g OCL
h OFL
i RPS
j RVU
k SIG
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Fig. 25 Continued
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