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Abstract

Estimation of orientation fields is a crucial task in fingerprint recogni-
tion. Many processing steps depend on their precise estimation and the
direction of fingerprint minutiae is a valuable information. But especially
for regions of low quality the task is not trivial and engineered approaches
on local features may fail. Methods that combine local and global fea-
tures learned from the data are state of the art and benchmarked with
the framework FVC-ongoing. We propose to use Convolutional Neural
Networks trained in a regression to estimate the orientation field (Con-
vNetOF). Regression is more accurate than classification in this case. Our
approach achieves an RMSE of 8.53° on the Bad Quality Dataset of the
FVC-ongoing benchmark. This is the best result reported so far.

1 DMotivation and Introduction

Fingerprint recognition is one of the most wide spread biometric modalities,
when it comes to identification and verification of individuals. Recognition
algorithms make use of the distinctive features in the fingerprints. Fingerprint
minutiae are features, which are typically used for recognition. Minutiae are
characteristic points of the papillary ridges, e.g. an ending and a bifurcation [13].
The spatial distribution and relations of positions and directions of minutiae are
unique for every finger which allows to distinguish fingerprints.

The direction of a fingerprint minutia is one of its most valuable informations
for recognition besides its type and position. It directly depends on the local
orientation at its location. The orientation field (OF) of the papillary ridges
(see figure is itself another important feature in fingerprint recognition [13].

Besides this, the OF is relevant information for image enhancement and
many processing steps along the workflow of a biometric feature extraction [13].
Deviations between the estimation and the real OF have to be as small as
possible for the whole fingerprint area [3]. Otherwise biometric features may
not be extracted correctly or spurious features may be generated.



Because of this, an accurate and reliable estimation of the OF is needed for
fingerprint recognition. But an accurate estimation is challenging especially for
low-quality fingerprint images.

Techniques and ideas for estimating the OF are vast. They can roughly be
divided into local and global techniques [3]. Local techniques are based on the
very vicinity of every point, e.g. by calculation of local gradients on grey-values
in fingerprint images. Those techniques often are not reliable in areas of low
quality [3]. In contrast, global techniques usually take benefit of models for
the global OF (see figure for typical patterns of OFs). The drawback
in constructing OFs is that this tends to overly smooth local irregularities and
regions of high curvature. In consequence hypothesized models are insufficiently
representing the actual OF. Computational complexity in general is higher for
global methods than for local ones [3]. Hybrid versions of both try to compensate
the drawbacks. However, especially for images of low quality the estimation of
the OF is still challenging. The Fingerprint Verification Contest (FVC-ongoing)
is providing a benchmark area for fingerprint orientation extraction [9]. As
results of this benchmark show, deviations between estimated and real OF are
still significantly higher for low quality fingerprint images than for images of
higher quality [8]. Closing this gap is one key factor for a more accurate and
more reliable fingerprint recognition.

Recently, methods of machine learning, which combine local and global fea-
tures and furthermore learn directly from the data seem to become a promising
solution for OF estimation [20]. In general, techniques which learn from the
data, have shown their superiority over engineered techniques in the last decade
for various image processing tasks. Techniques from the domain of Deep Learn-
ing (DL) and especially Convolutional Neural Nets (ConvNets) are state of the
art at numerous benchmarks, e.g. ILSVR [16]. Significant improvements have
been achieved by DL in the domains of Speech Recognition, Signal Processing,
Object Recognition, Natural Language Processing, and especially in Multi-Task
and Transfer Learning [2].

The versatility of ConvNets and Deep Learning techniques enables them
to estimate the OF of fingerprints. Our approach is to train a ConvNet as a
regression. This allows to learn an estimation for the continuous valued OF
directly from the data.

The rest of the paper is organized as follows: Related work in terms of OF
estimation and benchmarking of proposed approaches is discussed in section [2]
Our suggested approach will be explained in section Section [4] summarizes
the results and conclusions are made in section Bl Section [f] adds remarks on
the findings of this work and gives an outlook on future work.



Figure 1: Figures [Tal[Id show images of good quality. The orientations differ
between fingers and form typical patterns. Figures show examples of im-
ages with lower quality representing typical challenges. Quality of a fingerprint
image can be affected by the moisture of the finger and many other factors.
shows a sample with very moist skin, where the fingerprint in [L¢| is rather dry.
In addition, [Tf] shows scars.

2 Related Work

2.1 State of the Art: Benchmarking

Benchmarks are inevitable for a quantitative evaluation and comparison of ap-
proaches. The University of Bologna provides such a public benchmark frame-
work for specific tasks in biometric recognition: FVC-ongoing [9]. It also con-
tains a benchmark for Fingerprint Orientation Extraction (FOE). The bench-
mark is on-going and it allows to measure performance of algorithms for fin-
gerprint orientation estimation. Implemented algorithms can be uploaded and
tested. FVC-ongoing is the only benchmark offering independent measurements
on common sequestered dataset and defined metrics for this task. Therefore we
report our results based on the quantitative measurements provided by FVC-
ongoing.

Data Set

The benchmark consists of two data sets. Dataset FOE-TEST is available
for evaluation purposes by the contestants. Dataset FOE-STD-1.0 is available
only to the organizers of the benchmark. Both training and test set are divided
into two categories: images of good and images of bad quality. According to
their image’s quality, the sets are called Good Quality Dataset and Bad Quality
Dataset [7]. For the Good Quality Dataset 10 samples are provided, while for the
Bad Quality Dataset 50 samples are provided (see figure|[I] for examples). About
90,000 training data points are provided which represent the local orientation
at a single pixel of an eight-fold sub-sampling grid (see Table .

The images are captured with fingerprint livescanners at a resolution of
500dpi. The Bad Quality Dataset shows typical challenges in processing finger-
print images. This set consists of images from fingers with different levels of
skin moisture (compare the wet finger in figure to the dry one in figure
and the presence of scars in the fingerprint (see figure . The data is close
to what operational data of low quality may look like. The ground truth label



[ Set [ Name [ Number of Samples [ Number of Data Points

Good Quality Dataset 10 18946
FOE-TEST Bad Quality Dataset 50 75812
Good Quality Dataset 10 19260
FOE-STD | g 4 Quality Dataset 50 89562

Table 1: FVC provides datasets consisting of a Good and a Bad Quality dataset
each.

data has been produced by manual labelling [8]. The orientation is sampled at
an equidistant grid and angles are provided in 256 steps. Labelling is carried
out with support of a tool introduced by Maltoni et al [7]E| Additionally to
the fingerprint images and the ground truth orientation, a foreground mask is
provided. Only OF samples which are in the foreground area will be evaluated.

Metrics

The four central aspects measured by the benchmark are the deviations between
predicted and actual OF achieved on the Good Quality Dataset (AvgErrqq) and
on the Bad Quality Dataset (AvgErrgq) of FOE-STD1.0, memory consumption,
and average processing time for each sample. The measure for the OF deviation
is the average Root Mean Squared Error (RMSE) observed at all data points.
RMSE averages over all sampling points in the fingerprint area in a single sam-
ple image. One may argue that deviation might be more important in highly
curved regions than in regions of more or less constant orientation, e.g. regions
around OF singularities are highly curved. Accurate estimation in those regions
is necessary for localization of singular points. In contrast, the benchmark orga-
nizers argue that weighting all points equally is suited well for most of the other
feature extraction tasks where orientation is needed [§]. The most important
measure is AvgErrgq since this metric quantifies the ability of algorithms to
handle challenging images.

2.2 State of the Art: Algorithms

Many ideas for fingerprint OFs estimation have been proposed. A broad survey
of OF estimations with qualitative assessments is given e.g. by Biradar et al
[3]. But only seven results have been published for FVC-ongoing so far. The
two approaches LocalDict and ROF are performing best in terms of minimizing
the deviation achieved on the Bad Quality Dataset of FVC-ongoing. Therefore,
those methods are worth a closer inspection and will be described below.

Yang et al provide the best performing algorithm yet called LocalDict[20].
They propose to learn dictionaries of OF patterns. The dictionary contains

1 The workflow for labelling is roughly as follows (see [§] for details): A human expert
selects a pixel location, which he wants to label. The tool estimates the local orientation by
calculating the gradient. The expert may choose to accept the orientation estimate provided
by the tool or do a manual correction. A Delaunay triangulation on all labelled points is
performed. Each sampling point will be interpolated based on the supporting points of its
surrounding Delaunay triangle.



prototypes for local orientation patterns. In a second step, co-occurrence and
spatial distribution of the prototypes is learned. Those aspects represent the
global structure of fingerprint OFs. Thus, the proposed algorithm combines
local and global information. The algorithm first learns a rough estimate of
the OF. The locally best fitting prototype is assigned to each point. Finally,
corrections of assigned prototypes are performed to optimize likelihood of spatial
co-occurrence of the prototypes.

Cao et al proposed an algorithm they call ROF. It extracts first an estima-
tion of the OF by the gradient method applied to a root filtered image [6]. The
OF is represented as the gradient vector field. In addition, the positions of sin-
gularities are estimated. The idea is to smooth the OF while keeping divergence
and coherence of the orientation vector field. Intensity of smoothing is varied
according to a specific local quality and the distance to a near-by singularity.
Thus, areas of high quality and those close to singularities will be smoothed
less.

Using Neural Networks and utilizing learning from the data for fingerprint
recognition has been suggested previously. Baldi et al already proposed to use a
structure like modern Siamese ConvNets (without pooling layers) for fingerprint
indexing already in 1993 [I]. Zhu et al used a Multi-Layer Perceptron to estimate
a 16 step quantization of the OF in 2006 [21]. Olsen et. al used self organizing
networks to estimate fingerprint sample quality[14].

Using techniques from DL especially for OF estimation is a more recent de-
velopment. Sahasrabudhe et al proposed to use Restricted Boltzman Machines
(RBM) to estimate fingerprint OFs [I7]. An RBMs is probabilistic model which
uses a bi-directional neural network. RBMs therefore are not straight feed-
forward. An initial OF is estimated and the estimation is vectorized into x
and y components. Each component is fed into a separate single-layer RBM.
The trained weights of an RBM contain representations for the data used for
training which form a basis. Trained RBMs try to approximate the input by
this basis. The corresponding output can be interpreted as the best fit to the
learned representations. Thus, the output is like a corrected version of the in-
put, which fits best the learned data. The corrected OFs are used to enhance
fingerprint images. Finally, performance is measured in terms of the number of
spurious minutia extracted by a biometric feature extraction on the enhanced
images and in term of the accuracy a biometric comparison algorithm achieved
with such extracted features.

The most relevant work with respect to its methodology is an approach by
Cao et al which proposes to use a ConvNet trained as a classifier for orientation
[5]. They propose to train a ConvNet for a classification task. Target labels for
the classes are a selection of 128 characteristic OFs, which have to be selected
beforehand. Cao et al propose to use engineered noise to corrupt input images.
This in turn shall simulate artefacts one in fingerprint images of bad quality.



3 Proposed Approach
3.1 Idea

We propose to train ConvNets as a regression to estimate the OF in fingerprint
images. During the training for a regression, a ConvNet model M usually learns
to minimize the quadratic error between its propagation M (inp) and the target
value T'(inp) for a given input inp:

min ||T(inp) — M(inp)|[* (1)

During testing, for an input inp the model M will create a prediction M(zﬁp)

A ConvNet model M itself is assembled from multiple sets (layers) of train-
able filter kernels. The output of each layer is fed into the next layer of filters.
While such models learn simple local features in the first layers, the following
layers learn more complex and more global features.

By doing so, our approach utilizes learned local and global characteristics at
once. This turned out to be a successful strategy in the LocalDict approach. Our
approach has three advantages over LocalDict. First, our approach does not need
an initial estimation of the OF. Second, ConvNets use sparse representations
for information. This enables a more flexible representation than the one-hot
representation used by LocalDict. Third, our approach is an end-to-end solution,
i.e. input is the raw grey-value image and the corresponding foreground mask
and the output is an estimation of the OF. No separate processing steps need
to be carried out. No special assumptions about the spatial distribution have
to be separately modelled by learned data.

We train the model as a regression on a vectorization of the target orien-
tations. Compared to Cao et al.’s classification approach, regression is a more
natural approach for the estimation of continuous values. In addition, no selec-
tion of target patterns is necessary.

3.2 Model Architecture

The proposed ConvNet has been trained in the framework Caffe provided by
Jia et al [I0]. Our approach combines three different types of layers provided
in Caffe: Convolutional layers, Pooling layers and non-linear transfer layers.
Gray values of the fingerprint images are normalized in the foreground area to
have zero mean and unit standard deviation while the background is set to zero
(Normalization). To enforce the same image dimensions for all training samples
the images are embedded into a larger canvas.

Neurons in ConvLayer work like filter kernels (see figure [3b| for trained fil-
ters). Pooling layers perform a reduce operation on the local neighbourhoods.
They therefore work like sub-sampling. The pooling functions in this approach
is the maximum over all local values. The layers are therefore called Max-
Pooling. Non-linear transfer units simply apply a non-linear function to each
input value, e.g. ReLU(x) = max(0,z).
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Figure 2: Block diagram of the layout of the evaluated model M which calcu-
lates a vectorized estimation of the OF for a given input fingerprint sample and
a given foreground mask. M consists of Normalization, canvas, Convolutional
(ConvLayer), Pooling (MaxPooling), and Rectified Linear Unit (ReLU) layers.
The receptive field, which is processed from the original image, increases with
each layer. While the filters work locally in the first ConvLayers, the last Con-
vLayers work in a more global range. In this way, local and global features can
be combined by a ConvNet.

Our ConvNet is designed for the special needs in OF estimation (see figure
. Accurate local estimations are needed as well as regional smoothness and
global patterns. It therefore differs from typically very deep cascade of same
3x3 filters. The original fingerprint image is normalized in a Normalization
layer. The normalized image is filled into a larger canvas of 576x464 pixels in
an Embedding layer. In the following blocks of ConvLayers and ReLU layers
are concatenated. Additionally, in the first three blocks MaxPooling layers are
used to sub-sample the image dimensions to the provided target dimensions.
Filter sizes are designed to cover half of the width of a typical fingerprint ridge.
This is done to ensure good local estimations. In the next three blocks larger
ConvLayers of dimension 13x13x49 each are used for regional smoothness. All
ConvLayers have a striding of 1 and do padding to equalize height and width
of input and output. The subsequent combination of MaxPooling and larger
kernel leads to a larger receptive field for each output of layer 15, i.e. all pixels
within the turquoise area contribute to the output value of layer 15 in figure
This allows to combine the local features to more global ones. Usually,
so-called fully-connected layers are used at the end of the cascade of layers. In
a fully-connected layer each neuron is connected with every input as in classical
Multi-Layer Perceptrons. We use ConvLayers with kernel height and width of
1 as a proxy for such fully-connected layers at the end of our layer cascade [12].
The final layer has two output channels which estimating the vectorized target
orientation.



3.3 Training Algorithm

The ConvNet in our approach has been trained using a Stochastic Gradient
Descent [4]. The cost function is formulated as a quadratic regression on the
two-component representation of the orientation 8 at input inp:

. sin(2 - O(inp)) )

e H (cos(z - e(mp))) - M(inp) 2)

The images and ground truth orientation data from FOE-TEST are taken

as training data. This data provides 94,758 labelled targets for training. Figure

visualizes a typical representative taken from the training data. The model

M has 1,347,967 parameters. A cost function for large weights is added for a

so-called Weight Decay to enforce generalisation [I1]. Since large weights induce

high costs, weight decay punishes over-specialisation of weights and therefore
prevents over-training.

2

(a) Local Orientations (b) Filters in first layer

Figure 3: The training data provides fingerprint images and the hand-labelled
ground truth orientation, indicated here as red lines. The filter kernels in the
first ConvLayer work like edge filters and do a rough estimation of this orienta-
tion.

Parameters for training are the following: Weight decay factor is 10. Starting
learning rate is 10~° and adapted according to Inverse Decay policy with v =
10~* and a power of 0.75.

Figure [3D] visualizes the filter kernels of the first ConvLayer after training.
The kernels of the first ConvLayer work similar to edge filters. The next Con-
vLayer recombines those features to more complex features. Figure [4] visualizes
the output of all ConvLayers for a fingerprint sample after training. The out-
puts of some filters have only very little absolute values. This is an effect of
Weight Decay reducing the energy of unnecessary filter kernels.
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Figure 4: The output of all ConvLayers for a single input fingerprint sample.
Layer 21 represents the estimation for the vectorized OF of the input image.
The vectorized OF can be used to calculate the final OF estimation. Weight
decay can prevent a model M from over-fitting. As a result of weight decay the
output of some kernels has low absolute values.

4 Results

As mentioned in section[2.1] the four central aspects observed in the benchmark
are the deviations achieved on the Good Quality Dataset and on the Bad Quality
Dataset of FOE-STD1.0, processing time, and memory consumption. Figure [f]
visualizes the four aspects for all reported results. The benchmark organizers
do not provide a overall ranking based on the four aspects.

The reported deviations AvgErrqq for all algorithms do not outperform the
baseline algorithm significantly (see table. Performing well for images of good
quality therefore does not seem to be challenging even for simple algorithms.
The error rates on this set range from 5.24° to 6.7° while the baseline algo-
rithm achieves an error rate of 5.86°. ConvNetOF achieves 5.80°. The local
information extracted by the baseline algorithm is just sufﬁcientEl However,
the deviation AvgErrgq can be taken into account as a lower bound for the
deviations AvgErrgq.

To our mind, the most important aspect is the deviation achieved on the Bad
Quality Dataset for FOE-STD1.0. Here deviations vary more than on the Good
Quality Dataset: they range from 9.66° to 21.83°. Our approach ConvNetOF
achieves 8.53°. This reduces the deviation to about 88% relative to the former
best result. Figure visualizes the error rates for all reported results (compare
to table[2). On training data FOE-TEST ConvNetOF achieves 5.14°.

Timing and memory constraints strongly depend on the application. In fig-
ure the memory consumption is plotted against the deviation on the Bad

2 Qutperforming the baseline algorithm for AvgErrgq might be challenging for a good
reason: The Gradient algorithm is more or less used to generate the ground truth. One can
assume that for good quality images the human editor might consider the initial estimation
to be right even though it might show a systematic bias by the algorithm. In contrast, for
bad images manual correction might be obvious to the human editor. However, FVC-ongoing
still remains the best mean to compare OF estimators.
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Figure 5: Visualization of the reported results for the benchmark FVC-ongoing
FOE. Figure[5a]shows a scatter plot for the deviations achieved on both datasets.
Four algorithms outperform the baseline with respect to the deviation of the
Bad Quality Dataset. Figure [5b] reveals that memory consumption varies sig-
nificantly between these top four. A trade-off between Speed and Accuracy can
be observed in figure

Quality Dataset. In general, memory consumption is seldom a limitation and
may only be a critical issue for systems with very limited memory, e.g. for
SmartCards. The consumption of memory varies by orders of magnitudes and
ConvNetOF has the highest requirements for memory among all evaluated al-
gorithms.

Figure [bc|reveals a trade-off between deviation and average processing time:
The longer the computation time, the more accurate the result. Like in memory
consumption, the reported top results vary in their average processing time in an
order of magnitude. However, all algorithms are way faster than the time limit
of 60s per sample allowed by the benchmark framework. Our approach takes
the longest time to process an image. This is due to the evaluation performed
on a CPU at FVC-ongoing. However, ConvNets are suited for operation on a
GPU, which can increase the speed in orders of magnitude: While processing
one image takes about 6.1s on the benchmark system, it takes only about 25ms
of our GPUE| which is about 244 times faster and would allow processing 40fps.

For comparison, we also trained a model as a classification with the same
layout but the last layer as prediction for the 256 orientation classes. With the
same error on the training set, this model achieves 8.91° on the Bad Quality
Dataset and 6.17° on the Good Quality Dataset for FOE-STD1.0.

5 Conclusion

We have proposed to use ConvNets trained in a regression to estimate the OF
of fingerprints. Our approach has been evaluated on the benchmark framework
FVC-ongoing, which is the most relevant benchmark for estimation of OF. Con-

3An NVIDIA GTX 780 has been used for evaluation
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. AvgErrg AvgErrg Avg. Time | Max Mem. | Ref
Algorithm [ e | [kBytes|
ConuNetOF (R) 8.53 5.80 6,096 939,212
ConuNetOF (C) 8.91 6.17 6,257 943,888
LocalDict 9.66 6.08 5,987 67,544 [20]
ROF 11.20 5.24 762 671,984 [6]
MXR 11.36 5.59 2,937 11,140 n/a
Adaptive-3 13.27 5.93 4,772 121,936 [18]
AntheusOriEx 17.06 5.46 205 34,176 n/a
FOMFE 21.44 6.70 1,996 10,196 [19]
Gradient 21.83 5.86 74 42,872 [15]

Table 2: Reported results on FVC-ongoing. The table is ordered by the
error rate on the bad quality set (AvgErrpg) and only four results out-
perform the current baseline performance on this aspect. ConvNetOF is
evaluated as a regression (R) and as a classification (C). As a regres-
sion it performs best among all evaluated algorithms on this data set.
Best algorithm per aspect is marked bold. For result of ConvNetOF see
https://biolab.csr.unibo.it/FvcOnGoing /UI/Form/AlgResult.aspx?algld=5604

vNetOF achieves a deviation of 8.53° on the Bad Quality Dataset. Our approach
therefore outperforms all other algorithms in this aspect. The deviation on bad
quality images is lowered to about 88% relative to the second best result. This
narrows the performance gap between the estimation of OF on images of good
and those of bad quality. The performance of ConvNetOF on the Good quality
Dataset is competitive to the other evaluated algorithms. The model trained
as a regression outperforms the model trained as a classification. We found a
generalization gap between training and testing.

In terms of memory consumption our approach has the highest require-
ments among all evaluated algorithms. Using a GPU it outperforms all other
approaches in terms of speed.

6 Discussion and Outlook

The trained model is likely to be over-sized for this task. Inspection of the
trained ConvNet reveals that some filter kernels may be obsolete. For appli-
cation it would be reasonable to reduce the size of the ConvNet. This would
not only make it faster and less memory consuming but it would also prevent
over-training. However, runtime optimization is out of scope for this work.

Some remarks on the benchmark FOE of FVC-ongoing seem worth mention-
ing. The number of images (especially for the Good Quality Dataset) is small.
In addition, the ground truth for the orientation may be biased since it has been
edited by a human expert who manually corrects the output of an OF extraction
algorithm. Both facts in combination are bad circumstances for learning from
the data. Evaluations on larger datasets seem reasonable.
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