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Abstract—Morphing Attack Detection is a relevant topic aim-
ing to detect attempts of unauthorised individuals who want
access to a ”valid” identity. One of the main scenarios is
printing morphed images and submitting the respective print
in an passport application process. In order to improve the
detection capabilities and spotting such morphing attacks, it will
be necessary to have a more realistic data set representing the
passport application scenario with the diversity of devices and
the resulting printed, scanned or compressed images. Creating
training data representing the diversity of attacks is a very
demanding task because the training material is developed
manually or semi-automatically. This paper proposes a transfer-
style pixel-wise network for a general-purpose method to create
digital print/scan face images automatically and to use such
image in the training of a Morphing Attack Detection (MAD)
method. Our proposal can reach an Equal Error Rate (EER) of
5.13% with Random Forest and 3.17% using MobileNetV2 on
the FRGCv2 database between manual print/scan and synthetics
print/scan with 600 dpi. This method opens a new insight into
developing attack datasets easily and time efficiently.

I. INTRODUCTION

Synthetic face images have been utilised in many fields, as
realistic images can be created with Generative Adversarial
Networks (GAN). Most state-of-the-art approaches are based
on convolutional neural networks, transfer learning and GAN
to transfer the domain properties from one image to another
domain. These methods need pairing images of the same
objects to perform a pixel-wise transfer style. On the other
hand, unpaired images can be used to transfer the style of one
object image to another image unrelated to or from a different
object. In this context, the pairs pixel-wise transfer method
can generate synthetic images applied to morphing faces to
create and transfer the style from printed/scanned images.
Large numbers of such images will support the training
of Morphing Attack Detection (MAD) systems using these
methods, which is a relevant approach to improve training
database diversity, which were previously consisting of only
digital domain images.
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It is a relevant topic, to detect attempts of unauthorised
individuals who want to use a ”valid” identity document
issued for another individual. In recent years several such
cases have been report, most of them related to illegal border
crossings [1]. Morphing can be understood as a technique to
seamlessly combine two or more look-alike facial images from
a subject and an accomplice who, for example, could apply
for a valid passport by exploiting the accomplice’s identity.
A morphing attack takes place in the enrolment process stage.
The threat of morphing attacks is known for border crossing or
identification control scenarios. It can be broadly divided into
two types: (1) Single Image Morphing Attack Detection (S-
MAD) techniques and Differential Morphing Attack Detection
(D-MAD) methods [2]–[4].

In real-life scenarios, many countries issue an electronic
Machine-Readable Travel documents (eMRTD) passports
based on the applicant’s printed face photo. Some countries
offer online portals for passport renewal, where citizens can
upload their own face photo [5]. However, in most coun-
tries, the passport applicant supplies a printed image to the
government authority issuing the identity document. It is
subsequently scanned and embedded in the identity document,
both on the data page and in the chip of the eMRTD. Accepting
a printed face image excludes supervision of the face capture
process by design; the applicant supplies a facial image, and
its provenance cannot be conclusively verified. Then, to detect
a morphed image, which was printed and scanned, it will be
necessary to train S-MAD and D-MAD systems on a large
number of such samples.

In order to improve the previous limitations of a low
number of morphed images, we developed an image-to-image
pairing method based on the Pix2Pix algorithm [6] to generate
simulated print/scan images, in order to complement the
existing database that contains mainly digital versions of MA
with several morphing tools. It is essential to highlight that
manually creating print/scan images is very time demanding.

We describe the scenario as follows: First, a set of bona
fide and morphed images are selected. Second, a printed
version of digital images is created using a high-quality glossy
paper. Afterwards, printed images are captured with a desktop
scanner. Later, these images are manually checked for quality,
occlusion or other artefacts. It is essential to highlight that
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this process must be repeated image by image for each
new scanning device, which is compliant with the technical
regulation which defines the passport application process.

In summary, the contributions of this work are as follows.
• A pixel-wise transfer style method was proposed to create

synthetic digital print/scan 600 dpi versions from digital
images.

• Two backbones, UNet256 and ResNet50, were trained
from scratch and evaluated to get high-quality face im-
ages based on Frechet Inception Distance scores.

• A Leave-One-Out protocol was applied to the FRGCv2
database based on Random Forest and MobileNetV2 with
four morphing tools to show the utility of our proposed
method in terms of high MAD accuracy.

• The image results from the pixel-wise process reach a
very similar average EER to the manual process, accord-
ing to our results.

The rest of the article is organised as follows: Section II
summarises the related work on MAD. The database descrip-
tion is explained in Section III. The metrics are explained
in Section V. The experiment and results are presented in
Section VI. We conclude the article in Section VII.

II. RELATED WORK

Most of the approaches for image-to-image translation that
are recently reported in the literature use transfer techniques
based on Deep Learning (DL), where Generative Adversarial
Networks(GAN) are applied to the input image, in order to
translate the content to the target domain [7].

Zhu et al. [8] proposed an approach for learning to translate
an image from a source domain X to a target domain Y in the
absence of paired examples. The goal is to learn a mapping
G : X → Y such that the distribution of images from G(X) is
indistinguishable from the distribution Y using an adversarial
loss. Qualitative results are presented on several tasks where
paired training data does not exist, including collection style
transfer, season transfer, and photo enhancement.

Gatys et al. [9] proposed a new parametric texture model to
tackle this problem. Instead of describing textures based on a
model for the early visual system, they use a convolutional
neural network – a functional model for the entire ventral
stream – as the foundation for this texture model. The feature
information is extracted by 16 convolutional and five pooling
layers.

Johnson et al. [10] proposed utilising perceptual loss func-
tions to train feed-forward networks for real-time texture trans-
fer tasks. Li and Wand [11] combined the Markov Random
Fields model with deep neural networks, which was later
extended to semantic style transfer.

Karras et al. [12] developed the StyleGAN2 network. This
GAN is an extension of the progressive growing GAN that is
an approach for training generator models capable of synthe-
sising huge high-quality images via the incremental expansion
of discriminator and generator models from small to large
images during the training process.

Regarding MAD, Raghavendra et al. [13] explored the trans-
fer learning approach using the Deep Convolutional Neural
Networks (D-CNN) to detect both digital and print-scanned
versions of morphed face images. This work explored a
feature-level fusion of the first fully connected layer from pre-
trained VGG19, and AlexNet networks.

Debiasi et al. [14] and Scherhag et al. [15] proposed to
exploit the image noise patterns by Photo Response Non-
Uniformity (PRNU) analysis, where the unique PRNU-pattern
is extracted and analysed.

Mitkovski et al. [7] proposed a method based on a condi-
tional generative adversarial network to generate print and scan
images. The goodness of simulation is evaluated with respect
to image quality, biometric sample quality and performance,
as well as human assessment.

Ferrara et al. [16] proposed an approach based on Deep
Neural Networks for morphing attack detection. In particular,
the generation of simulated printed-scanned images and other
data augmentation strategies; and pre-training on large face
recognition datasets. The author used the Progressive Morph-
ing Database (PMDB) [17] for network training. This dataset
contains 6.000 morphed images automatically generated start-
ing from 280 subjects selected from a different dataset.

Damer et al. [18] proposed a pixel-wise morphing attack
detection (PW-MAD) approach where they train a network
to classify each pixel of the image rather than only having
one label for the whole image. They also evaluated unknown
re-digitising attacks. Additionally, they created a new face
morphing attack dataset with digital and re-digitised samples,
namely the LMA-DRD dataset. However, this dataset presents
limited printed and scanned images with only 276 bona fide
attacks.

III. DATABASES

In this work, we employ the FRGCv2 database [19] for
our experiments. The selection of this database was motivated
because we developed the morphed images in two sets: No
post-processing and the print/scan at 600 dpi version, which
means printing and scanning images one by one was done
with a resolution of 600 dpi. The original images have a size of
360×480 pixels. All the images are aligned by the connecting
line between the eye centres using the Dlib library.

The database was processed two times for different stages.
First, to create synthetic images in a pixel-wise algorithm. We
developed pairs of images side by side to represent the orig-
inal digital images and the manually created printed/scanned
version in 600 dpi. Both images must have the same subject,
size, and image aligned. The side-by-size images have a final
size of 720× 480 pixels.

As a second process, the FRGCv2 database and the output
of the synthetic version generated by the pixel-wise method
were used to train a classifier based on Random Forest (RF)
with 300 trees [4] and a MobileNetV2 network to detect bona
fide and morph images. With this setup, it is possible to
evaluate the influence of our pixel-wise transfer style method.
Table I shows the number of images.



The following algorithms were used to create the morphed
images:

• FaceFusion is a proprietary morphing algorithm devel-
oped for IOS app 1. This algorithm creates high-quality
morph images without visible artefacts.

• FaceMorpher is an open-source algorithm to create morph
images 2. This algorithm introduces some artefacts in the
background.

• OpenCV-Morph, this algorithm is based on the OpenCV
implementation 3. The images contain visible artefacts in
the background and some areas of the face.

• Face UBO-Morpher [20]. The University of Bologna
developed this algorithm. The resulting images are of
high quality without artefacts in the background.

TABLE I
MORPHING SOFTWARE TOOLS AND NUMBER OF IMAGES CREATED BY

EACH TOOL WITH IMAGES FROM FRGCV2.

Database Nº Subjects Bona fide Morphs
FaceFusion 533 984 964
FaceMorpher 533 984 964
OpenCV-Morph 533 984 964
UBO-Morpher 533 984 964

IV. METHOD

Our method is based on a transfer style network called
pixel-to-pixel (Pix2Pix), as illustrated in Figure 1. It takes
two face images as the input, bona fide digital and bona fide
handcrafted print/scan versions from the same subject and
delivers as outputs the original images translated to the new
domain (print/scan) as is shown in Figure 2, this is depicted
as the two images passing through two identical copies of the
CNN block, but in practice, only one copy is stored in memory,
and it takes the two images, producing the two embeddings.

Fig. 1. Illustration of our pixel-wise print/scan simulation network.

V. EVALUATION METRICS

A. Sample Quality with Frechet Inception Distance

One of the difficulties with GAN algorithms, and in par-
ticular when applied to face images, is how to assess the

1www.wearemoment.com/FaceFusion/
2https://github.com/alyssaq/face morpher
3www.learnopencv.com/face-morph-using-opencv-cpp-python

quality of the resulting (synthesised) images. Currently, a suite
of qualitative and quantitative metrics has been proposed to
assess the performance of a GAN model based on the quality
and diversity of the generated synthetic images [21], [22]. In
this work, we use the Frechet Inception Distance (FID) [22].
The FID metrics allow us to compare results from different
GAN models. The FID score measures the objective quality
of the print/scan synthetic images.

Frechet Inception Distance (FID) compares the similarity
between two groups of images, A and B. First, to compute the
FID, all images from set A and set B have to be processed
by an Inception v3 network, pre-trained on ImageNet [23].
Then, the 2,048 feature vector of the Inception-v3-pool3-layer
is stored for each image. Finally, the distributions of A and
B in the feature space are compared using Equation 1, where
µA and µB are the mean values of the distributions A and B,
respectively, and ΣA and ΣB are the covariances of the two
distributions.

FID = ∥µA−µB∥2+Tr
(
ΣA +ΣB − 2(ΣA · ΣB)

1/2
)

(1)

B. Morphing Attack Detection Accuracy

The ISO/IEC 30107-3 standard4 presents methodologies for
the evaluation of the detection performance of MAD algo-
rithms for biometric systems. The APCER metric measures the
proportion of attack presentations—for each different PAI—
incorrectly classified as bona fide presentation. This metric
is calculated for each PAI, where the worst-case scenario is
considered. Equation 2 details how to compute the APCER
metric, in which the value of NPAIS corresponds to the
number of attack presentation images, where RESi for the
ith image is 1 if the algorithm classifies it as an attack
presentation (morphed image), or 0 if it is classified as a bona
fide presentation.

APCERPAIS = 1− (
1

NPAIS
)

NPAIS∑
i=1

RESi (2)

Additionally, the BPCER metric measures the proportion of
bona fide presentations mistakenly classified as morphing at-
tack presentations. The BPCER metric is formulated according
to equation 3, where NBF corresponds to the number of bona
fide presentation images, and RESi takes identical values of
those of the APCER metric.

BPCER =

∑NBF

i=1 RESi

NBF
(3)

These metrics effectively measure to what degree the algo-
rithm confuses morphed images with bona fide images, and
vice versa. The APCER, and BPCER, metrics are dependent
on a decision threshold. A Detection Error Trade-off (DET)
curve is also reported for all the experiments. In the DET
curve, the D-EER value represents the trade-off when the
APCER is equal to the BPCER. Values in this curve are
presented as percentages.

4https://www.iso.org/standard/79520.html



VI. EXPERIMENTS AND RESULTS

A. Image Generation

Portrait pictures from FRGC were used to generate new
print/scan images. For image generation based on pix2pix,
three different convolutions neural networks were explored
based on UNet256 and ResNet50. For ResNet, we are fine-
tuning the network in order to improve the results based on
layers: block6 and block9. The batch size was set up to 16
and 200 epochs.

Fig. 2. Example of the images generated by pix2pix.

Table II shows the FID scores for three proposed back-
grounds. The first columns show different handcrafted methods
and morphing tools used. The second column shows the FID
value (a lower value is better) between the manual print/scan
images and each morphing tool. It is essential to highlight
that this value is the goal to reach for our pix2pix GANs
for automatic print/scan version. Columns three up to five
show the FID score reached for UNet256, ResNet-6blocks,
and ResNet-9blocks. The best results, which means lower
differences with column 2, were obtained by UNet (column
3).

TABLE II
SUMMARY RESULT FOR PIX2PIX GENERATION BASED ON FID SCORE.

Source FID (↓)

FRGC
Handcrafted

Handcrafted
Bona fide

PS600
Baseline

PIX2PIX
UNet256

PIX2PIX
ResNet50

Block6

PIX2PIX
ResNet50

Block9

Bona fide
PS600 0 16.985 52.623 77.83

FaceMorpher
PS600 63.71 79.29 100.589 117.75

FaceFusion
PS600 114.975 127.874 186.16 166.075

OpenCV
PS600 28.023 39.824 75.119 107.088

UBO
PS600 18.559 20.066 58.114 95.847

B. Morphing Attack Detection

A Leave-One-Out (LOO) protocol was applied to train the
morphing attack detection system, which means in the first
round, UBO-Morpher was used to compute the morphing
images used for the train, and testing was carried out with
FaceMorpher, OpenCV-Morpher and FaceFusion. OpenCV
Morpher was used for training and testing in the second round,
with morphed images created with FaceFusion, FaceMorpher,
UBO-Morpher, and so on. All datasets allow subject-disjoint

TABLE III
SUMMARY RESULTS AND DIFFERENCE BETWEEN HANDCRAFTED AND

SYNTHETICS IMAGES FOR RF.

Morphs Tool-Out
UBO-Morpher

PS600
LBP-VER

EER
(%)

PS600-Syn
LBP-VER

EER
(%)

PS600+Syn
LBP-VER

EER
(%)

PS600
LBP-HOR

EER
(%)

PS600
LBP-HOR

EER
(%)

PS600+Syn
LBP-HOR

EER
(%)

FaceFusion 13.49 24.86 5.64 12.91 24.42 5.31
FaceMorpher 13.09 17.96 5.91 12.39 17.20 6.01

OpenCV
Morpher 11.51 20.38 4.46 10.87 20.15 4.09

Average 12.69 21.06 5.33 12.15 13.38 5.13

results to be computed; no subject has an image in both the
training and the testing subset.

In order to train our S-MAD classifier, the FRGCv2
database was partitioned to have 70% training and 30%
testing data. Different kinds of features were extracted from
faces based on Uniform Local Binary Patterns (uLBP) for
all experiments. The histogram of the Uniform Local Binary
Patterns (uLBP) was used for texture. For the uLBP all
radii values were explored from uLBP81 to uLBP88. The
image’s vertical (uLBP VERT) and horizontal (uLBP HOR)
concatenation divided into eight patches was also explored.

After feature extraction, we fused that information at the
feature level by concatenating the feature vectors from differ-
ent sources into a single feature vector that becomes the input
to the classifier. All features were extracted after applying our
proposed transfer texture method.

The S-MAD system was trained based on a Random Forest
classifier, which considered each feature extraction method
described above as input. Three experiments were developed:

Experiment 1: We evaluated the LOO protocol applied to
the handcrafted morphing set with 600 dpi for this experiment
(PS600-based morphing set).

Experiment 2: This test evaluated the LOO protocol applied
to print and scan images generated for our pixel-wise proposal
to simulated 600 dpi (PS600-Synt-morphing set). Figure 3
show DET curve results for Experiments 1 and 2.

Figure 3, show the DET curves for UBO-Morpher in a LOO
protocol for RF. In parenthesis is shown the EER for each
morphing tool. The four DET curves show the MAD results
between PS600 handcrafted and PS600 handcrafted plus syn-
thetics pixel-wise generated. FaceMorpher was identified as
the most challenging morphing tool.

Experiment 3: We evaluated the best results based on the
LOO protocol but applying a MobileNetV2 convolutional
neural network. This network was finetuned in order to obtain
the best results considering the low number of images. The
Learning rate applied was 1e−5, 100 epochs, Adam optimiser,
alpha rate of 1.4. and data-augmentation.

Table III and Table IV shows the EER for each feature
applied to PS600 Handcrafted and PS600 Handcrafted plus
synthetics on the FRGCv2 database and the fourth morphing
tool for RF and MobileNetV2, respectively. Overall, we can
obtain an EER between the real PS600 and Synthetics PS600
of 5.13% for RF and 3.17% for MobileNetV2.



Fig. 3. DET Curves comparing handcrafted manual PS600 images versus PS600 handcrafted+synthetics (DS) images using a Random Forest Classifier and
UBO-Morpher as LOO. Left to right: Horizontal LBP concatenation handcrafted PS600, PS600 DS. Vertical LBP concatenation handcrafted PS600, PS600
DS.

TABLE IV
SUMMARY RESULTS AND THE DIFFERENCE BETWEEN HANDCRAFTED AND

SYNTHETICS IMAGES FOR MOBILENETV2.

Morphs Tool-Out
UBO-Morpher

PS600
LBP-VER

EER
(%)

PS600+Syn
LBP-VER

EER
(%)

PS600+Syn
MobileNetV2

EER
(%)

FaceFusion 13.49 5.31 1.33
FaceMorpher 13.09 6.01 5.39

OpenCV
Morpher 11.51 4.09 2.81

Average 12.69 5.13 3.17

VII. CONCLUSIONS

This work shows that it is feasible to create print/scan from
Digital databases in order to improve the MAD and increase
the number of images and scenarios available from training
more robust classifiers and developing generalisation capabil-
ities. The pixel-wise must be improved even more in order to
reach lower FID scores and different image resolutions; thus,
we can get more realistic images and reduce the EER.
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